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<PACKET INCOMING>

<TIME = "14830.034482"/>

<SOURCE IP_ADDRESS = “192.168.45.12"/>
<DESTINATION [P_ADDRESS = “96.223.45.186"/>
<SEQUENCE_NUMBER = “22489654" />

<CURRENT _APP_PID = “69784374"/>

<PARENT _APP_PID = “48922537"/>

<USFR_PID = “529336201"/>

<HOST_PID = “361203729"/>

... (OTHER PIDs ALSG LISTED)

<PACKET TYPE = “3325 READ FROM DATABASE"/>
<CONTENT _ID = “34876105"/>

<NETWORK_PATH = “192.168.45.12, 192.168.45.02, 76.167.89.201,
<HMAC SSA_A ="396A1DB630D36E8930CA7153.." />
<HMAC SSA_B="EF7362B48D22A(3921ED261B..."/>
</PACKET>
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<PACKET INCOMING>
<TIME = “5301.189456"/>
<SOURCE_IP_ADDRESS = “75.128.32.146"/> |
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SA 2 L0G RECORD

<PACKET INCOMING>
<TIME = "5312.497210"/>
<SOURCE_IP_ADDRESS = “75.128.32.146"/> |

<DESTINATION_[P_ADDRESS = “84.156.32.209"/>

<DESTINATION_IP_ADDRESS = "128.31.54.232"/> |

<SEQUENCE_NUMBER = “57812657"/>
<(URRENT_UA_PID = "55197823"/>
<PARENT_UA_PID = “55197823"/>
<USER_PID = "529336201"/>

<CLIENT_PID = “361203729°/>

... {OTHER PIDs ALSO LISTED)

|<PACKET_TYPE = “1064 REMOTE TERMINAL"/> |

<CONTENT_PID = “0"/>

<NETWORK_PATH = “75.128.32.146, 75.128.321 .." />
<HMACSSA_1="396A1DB630D34E8930CA7153.." />
<HMACSSA_2= “EF7362B48D22A(3921ED2618..." />
</PACKET>

<PACKET INCOMING>
<IIME = "5322.467820"/>

<SOURCE_IP_ADDRESS = "75.128.32.146"/> |
<DESTINATION_IP_ADDRESS = “96.223.45.186 />
<SEQUENCE_NUMBER = "61785278"/>
<CURRENT_UA_PID = “55197823"/>

<PARENT UA_PID = "55197823"/>

<USER_PID = "529336201"/>

<CLIENT_PID = “361203729"/>

... (OTHER PIDs ALSO LISTED}

| <PACKET_TYPE = “1064 REMOTE TERMINAL"/> |

<CONTENT_PID ="0"/>

<NETWORK_PATH = “75.128.32.146,75.128.32.1, ."/>
<HMAC SSA_1 ="396A1DB630D36E8930CA7153.."/>
<HMACSSA 2= "EF7362B48D22AC3921ED2618.." />
</PACKET>

<SEQUENCE_NUMBER = “59871245"/>
<CURRENT_UA_PID = “55197823"/>

<PARENT _UA_PID = "55197823"/>

<USER_PID ="529336201"/>

<CLIENT_PID = "361203729"/>

... (OTHER PIDs ALSO LISTED)

|<PACKET_TVPE = “1064 REMOTE TERMINAL"/> |
<CONTENT_PID = “0"/>

<NETWORK_PATH = “75.128.32.146, 75.128.32.1, ..."/>
<HMACSSA 1 ="396A1DB630D36EB930CA7153." />
<HMAC SSA_2= “EF7362B48D22A(3921ED2618.."/>
</PACKET>

SA 410G RECORD

<PACKET INCOMING>

<TIME = “5317 497210"/>

<SOURCE_IP_ADDRESS = “75.128.32.146"/> |
<DESTINATION_IP_ADDRESS = “58.179.34.106"/> |
<SEQUENCE_NUMBER = "60458790"/>

<CURRENT _UA_PID = “55197823"/>

<PARENT _UA_PID =“55197823"/>

<USER_PID = “529336201"/>

<CLIENT_PID = “361203729"/>

.. {OTHER PIDs ALSO LISTED)

|<PACKET_TYPE = “1064 REMOTE TERMINAL"/> |
<CONTENT_PID = “0"/>

<NETWORK_PATH = “75.128.32.146,75.128.32.1, .."/>
<HMACSSA_1 ="396A10B630D36E8930CA7153.."/>
<HMACSSA_2= “EF7362B48D22AC3921ED261B.."/>
</PACKET>

FIG. 32
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CLIENT,, BADGE:

BADGE XBITS

PID TYPE B

CLIENTp XBITS]

PID TYPEE
PID TYPEF

PID TYPEN
PIDTYPE M

PID TYPEK
PID TYPE)

PID TYPEI

PIDTYPED

PWDg XBITS

PID TYPE G FIG. 33

VERIFY:
INPUT: XVo=F-BOX(HASH XV KEY(SA} SAg))
X XV3=F-BOX(HASH, XV, KEY(SSA}, SAg))
CALCULATE: CALCULATE:

XV9=F-BOX{HASH XV KEV(SA} SA9)) | | XVg=F-BOX(HASH XVs, KEY(SAo,SSAg))

Ky ={Tickety, XV, XV
I
NA *f\)\’ J
73N N N
20 D
7 A
$SA} : = S5y
TKg={Tickeky, XV4,XV5}
INPUT:
XV VERIFY:
CALCULATE: XVs5=F-BOX(HASH, XV, KEV(SSA7,S5A))
XV3=F-BOX(HASH XV, KEY(SSA},SA9)) XVg=F-BOX(HASH XVs, KEY(SA2,S5A9))
XV5=F-BOX(HASH, XV, KEY(SSAy, SSAg))

FI6. 34
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SA - A = SN ——— SA - - o s 0
~ 7 - / /
-~ N Ve
A e ANN s
SSA - SSA = — SSA b-—— — =9 ¢ @
FIG. 35

ATTACK TRACEBACK TIME VS. NETWORK SIZE
-——I—"""’/ __*
/ —o— ATTACK TRACEBACK TIME
(T2-T1)

—=— BOTNET DETECTION TIME
(13-M)

A4 & —

TIME (ms)

= —_— ~D (%)
Wi — U N W U

1,000 5000 10,000 50,000 100,000
# CLIENTS IN NETWORK

FIG. 36
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TIME (ms)

o

TIME (ms)
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(T2 - T1) ATTACK TRACEBACK TIME VS. NETWORK SIZE
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[ e — —
—o— (T2-T1) TRACEBACK TIME,
= 1 SSA
— —a— (T2-T1) TRACEBACK TIME,

255As

1,000 5000 10,000 50,000 100,000
# CLIENTS IN NETWORK

Fi6. 37

(T3 -T1) ATTACK TRACEBACK TIME VS. NETWORK SIZE

/
0———0”""/
—— {T2-T1) TRACEBACK TIME,
— 1 SSA
._/,_’l——————.//
—=— {T2-T1) TRACEBACK TIME,

2 554s

1,000 5000 10,000 50,000 100,000
# CLIENTS IN NETWORK
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SCENARIO 1 % OF ACTIVE SAs
. % OF ACTIVE SAs/$SAs THAT ARE TRAITOR/SPOOFED - % OF ACTIVE SShs
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SCENARIO 3 % OF ACTIVE SAs

0 % OF ACTIVE SAs/SSAs THAT ARE TRAITOR/SPOOFED - % OF ACTIVE SSAs
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

____________________________
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0 500 1000 1500 2000 2500 3000 3500 4000
TIME (CLOCK CYCLES)

Fi6. 41

% OF ACTIVE CUSTOMERS THAT ARE TRAITORS

%

0 500 1000 1500 2000 2500 3000 3500 4000

TIME {CLOCK CYCLES) ———— SCENARIO 1
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AVERAGE NUMBER QF SUCCESSFUL ILLEGAL DATACENTER ACCESSES
(AVERAGE OF 6.67 ATTEMPTS,/100 CLOCK CYCLES

1.47
§1.2-
g0
=08
—_—
S 0.67
S 0.4
% 0. :
e : : e i
0-100 101-200 201-300 301-400 401-500 501-600 601-700 801-900 901-4000
TIME PERIOD (CLOCK CYCLES) --O-SCENARIO 1
——aeSCENARIO 2
—-=-SCENARIO 3
FIG.43
BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
® O o
XBITS

FIG. 44
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STORAGE METHOD 1 STORAGE METHOD 2
DATABASE 1 DATABASE 2 DATABASE 3

XSLICES

CIPHERTEXT

FIG. 45

LAYER 3 XSLICES
> LAYER 3 XBITS

LAYER 2 XSLICES
LAYER 2 XBITS

LAYER 1 XSLICES
LAYER T XBITS
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F-BOX (XU, SCust, )
L
F-BOX (OFFSET, SCust, ) FIG. 47
“NAVIGATION" FILE CIPHERTEXT

PAGE START AND END POINTS

PAGET | N CIPHERTEXT AN

AWHICH XSLICES —

INSERTION POINTS FOR XSLICES —

PAGE 2 I

PAGE 3 —

1
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POSSIBLE XSLICE/DATA ISTXSLICE/DATA  2ND XSLICE/DATA 3D XSLICE/DATA

BLOCK LENGTHS BLOCK BLOCK BLOCK
1200 BYTES
1203 BYTES
1215 BYTES
1605 BYTES
1609 BYTES

yE-Ee
WIVRELCE

FIG. 51

1T XBIT INDXBIT  3RDXBIT  ATH XBII
POSITION POSITION ~ PGSITION  POSITION
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100 NODES

FIG. 55

100 NODES
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PROPORTION OF PASSING DATA SAMPLES
("MATCHED" AES SAMPLES)

RS B
¢ ¢ o
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= 2 2 ¢
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TEST NUMBER
FIG. 57A
PROPORTION OF PASSING DATA SAMPLES
("MISMATCHED" AES SAMPLES)
]‘00 _______________________________________________________________________________________
. . .
. . . .

Z 09 ¢ *e® T S R e .
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S
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ROOT
5 LEVEL T FOLDERS
5 LEVEL 2 FOLDERS PER LEVEL 1 FOLDER
=75 LEVEL 2 FOLDERS
4 DATA FILES PER LEVEL 2 FOLDER
=100 DATA FILES
4 SEGMENTS PER DATA FILE
=400 SEGMENTS
FIG. 58
% OF ACTIVE SAs/SSAs ARE TRAITORS
1001 Pt <A e e e
T e
2 e
%
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L

0
0 00 1000 1500 2000 2500 3000 3500 4000
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% OF FILE DIRECTORY TREE STOLEN-
CONTAINED vs. RUNWAY BOTNET
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1 C\System\system32\cmd.exe =
SSA 1 STARTUP

Enter 0 for new SSA startup, 1 if SSA already set up:0
Enter 0 for primary SSA, 1 for secondary SSA:0

o MESSAGE LISTENER STARTED ****

Received Q1 from /131.204.128.32:8031.  SegNum: 1339659104

Sent Q4 message. Seq #: 1487416476

Received Q1 from /131.204.128.32:8033.  SeqNum: 674633572

Sent Q4 message. Se%#“. 1612139831

Received Q3 from /131.204.128.32:6031.  SeqNum: 1915897723

Sent Q4 message. Se%#“. 720637442

Received R4 from /131.204.128.32:8031.  SeqNum: 1339659105
Received R4 from /131.204.128.32:8031.  SeqNum: 1339659105 (repeat)
Sent R5 message. Seq # 1487416477

FIG. 6/A

O C\System\system32\md.exe =
SA 1 STARTUP

Enter the IP Address of ihefrimu[)y $SA:131.204.128.32
Sent Q1 message. Se%#. 1339659104
Received Q4 from /131.204.128.32:9031.  SeqNum: 1487416476
Emering listen mode. Listen Port: 8032

o+ MESSAGE LISTENER STARTED™***

Received Q5 from /131.204.128.32:8033.  SeqNum: 1846087755
Sent Q8 message. Seq # 1780985735

Received R1 from /131.204.128.32:7033.  SeqNum: 1246651337
Sent R4 meSS(ége. Seq#: 1339659105

Re-transmitted data packets.

Sent R2 message. Seq # 724542297

Received RS from /131.204.128.32:9031.  SeqNum: 1487416477
Sent R8 message. Seq #: 724542298

Sent R7 message. Seq # 1780985736

Re-transmitted data packets.

FIG.6/B
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O C\System\system32\cmd.exe =
SSA 1 STARTUP

Enter the IP Address of 'rhe(;mmur}y $SA:131.204.128.32

Sent Q3 message. Se 15897723

Received Q4 from /I%l 204.128.32:9031.  SeqNum: 720637442
Emermg listen mode. Listen Port: 6032

*+f MESSAGE LISTENER STARTED ****

FIG.67C

O3 C\System\system3Z2\cmd..exe =
BADGE 1

Enter choice:
1. Set Badge PIN FIG.6/D
2. Use Badge for IDACS 67

(hoice:2

Enter PIN:1234
Badge Active

O C\System\system32\cmd.exe =
CLIENT 1 STARTUP

Enter choice:

1. Register Client with [DACS
2. Establish Secure Session
3. Send WRITE to Database
4. Send READ to Database
5. Destroy Secure Session

6. Quit

(o] FIG. 67F

Set your User Password:password

If you enter your Duress Password durm% an IDACS transaction,
the transaction will fail and the System Administrator will be
notified that you are under duress.

Set your Duress Password:duress

Enter the IP Address of un SA (must be an SA 1):131.204.128.32
Sent R1 message. Se% 246651337

Received R2from /131.204.128.32.8031. SeqNum: 724542297
Received RS from /131.204.128.32.8031. Se Num: 724542298
Received R9 from /131.204.128.32.8033. SeqNum 1890816334
Registration successfull
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[ Phone Simulator
File Edit View Simulate Tools Help

T

Encrypt/Dearypt a file

This program will allow you to encrypt or
decrypt afile in 1 KB segments using a
password.

The file name you specify will create a file
that contains the names of two randomly
named data files.

The two data files will contain the

tion.

Encrypt ¢t whether you want
ot a tile.

Decrypt

Register

Exit

Switch Application

(lose
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0 Q\System\system32\cmd.exe =
Choose WRITE operation:

1. Normal WRITE

1 Siﬂ%{& PID Fail
3. ATTACK - User Password compromised
4. ATTACK - User Badge compromised
5. ATTACK - Client compromised
6. ATTACK - User Password and User Badge compromised
7. ATTACK - User Password gnd Client compromised FIG 68A
8. ATTACK - User Badge and Clignt compromised
hai 79. ATTACK - User Password, Badge, and Client compromised
oice:

Enter your User Pussword:gussword

Sent messr:]qe. Seq #; 1335751984

Re-transmitted data packets.

Received T12 from /131.204.128.32.8031. SeqNum: 2076674577
Received T12 from /131.204.128.32.8031. SeqNum: 2076674577 (repeat)
Database Write failed; received T12 NACK message from network.

3 (\System\system32\emd.exe =

Re-transmitted data packets.

Received S8 from /131.204.128.32.7033. SeqNum: 1335751983
Received T1 from /131.204.128.32.7033. SeqNum: 1335751984
Listener priority updated: 5

Received T1 from /131.204.128.32.7033. SeqNum: 1335751985
Received T1 from /131.204.128.32.7033. SeqNum: 1335751986
Received T1 from /131.204.128.32.7033. SeqNum: 1335751987

Received T1 from /131.204.128.32.7033. SeqNum: 1335751988 FIG. 688

Listener priority updated: 5

T1 message dro&)ed; one or more Client PIDs invalid!
Please refer to SA Event Logs for details.

Sent T12 message. Seq #: 2076674577
Re-transmitted data packes.
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g‘..g(..lu.“..?-..gu.3...;...4...“..5...“

FKAOKHOK F KRR S oK K o ) R SR RS F R FR R S K Kok koK Kok ok Rk Aok b R ok ok ok ok

INTRUSION REPORT

sk ok s ke o ok SHoK ok Aok K ok oK R KR R HOK KR ok R ook ok ok K RS ROk koK ok sk Rk Kok koK ok

Intruder Client 1D: -417225472
Intruder [P Address: 131.204.128.32
Intrusion Time: 2012/3/25 12:16.22

ID of detedin% SA:-1799371211
IP Address of detedting SA: 131.204.128.32

Intruder packet type: WRITE reguesi FIG. 6 8 C

Reason for intrusion detection: Client PID failure

Client PIDs failed: 2, 3,4, 5,

Conclusion

User Password assodiated with Client ID -417225472 compromised.
(lient Storage associated with Client 1D -417225472 compromised.

[} Phone Simulator -
Fle Edit View Simulote Tools Help

=)

187H1JebX30tM1Nk-+bK+/)6qB9G)f+eLUh
ID(¢+0A0d|5iZerGIO5qu g’/”HLhmT(
GMYLFIP/nj9A5Wx0Zph(8HuAB2 3jm+CV+Y
2A6I%Viv (NALwpZG8d9Phzec1 FdBP6AV(
XEow AVv4/uJSqD/HbJ867IV4E0WjaVP5Vl FIG. 69A
xBFj/1fgNNNEuDZIijFcBU279twrpoOXfA
wzlH0607z3qc0eqq 8(qLM/Iu+6 K7 Ewt
FIN8On/KvF+hxtwigsQOxtkH1 MMkPGOZZD
WU273U26T95i5rPVSHlyhthhraNxgeeM8E
f33Wefir'ISY3 U1PeDLODg5aEK5PClv+/
mbR 4wEPanckaKkYtBRL(f4Px3£zU
hQrRBxsu2aapNS3Y382yU5YFqDASL Mg
H8b3BuG0c] KlaaDiXIWiL(fYHxo ma+$x
Alkencl70PFIWKXTcBIrfQYb11ysNAVYE9
pnlCns4B2At5FzBA7bmz6/HSmYkJepOcrh
J\/ ZThajg0a/tdSR2XX+c0ufM+TtOgNQFlwAOa
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LI Phone Simulator =101X
File Edit View Simulate Tools Help
/Device/home/user/documents/data/
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INFGLGIb.xls
B 13k8
KVb1ZLQ2.ppt
Bk T
FIG. 69B
[J Phone Simulator [=[a]x

Fle Edit View Simulate Tools Help
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Search
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(] Phone Simulator _[o[x
File Edit View Simulate Tools Help

FIG.69E
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(] Phone Simulator

File Edit View Simulate Tools Help

JEE—

/Device/home/user/documents/Client_Storage

( Search

(lientStorage.txt
B kg

Ay

Y

<DEVICE id="SELF">
<SPI data="374442"/>
<ID data="341338"/>
<PID type="0" 1D="-1874284772"
TransNum="-1996962186"/>
<PID type="1"1D="-5217533326"
TransNum="44469013"/>

<PID type="4" ID="51009"
TransNum="91974"/>

<PID type="5" ID="55258"
TransNum="56525"/>

</DEVICE>

<DEVICE id="SA">
<SPI data="1873457203"/>

<KA
gtFnufl”5682729EBOBO76(DEB72]4(F9860

K(E4 />

<
data="9F(5D24(AB91BA63FAF8937884EA
25C"/>
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PROTECTED STATICT STRING TRANSFORM{CHAR KEY) {
STRING KEYSTRING= NULL:
SWITCH (KEY){
CASE “A":CASE ‘a’ KEYSTRING= “34754754";
BREAK:
CASE ‘B"-CASE 'b'- KEYSTRING= “7cal 5fe6”;
BREAK;
CASE “C':CASE 'c’: KEYSTRING= “Sef 1eehd”;
BREAK;
CASE 'D"CASE ‘d’: KEYSTRING= “67d27h7¢":
BREAK;
CASE “E':CASE ‘e’: KEYSTRING= "54937¢9f":
BREAK:
CASE ‘F:CASE'f": KEYSTRING= “Teccddab”;
BREAK:
CASE “G':CASE ‘g': KEYSTRING= "c332e32f";

BREAK;

CASE “H':CASE ‘h': KEYSTRING= "8claSb7d”;
BREAK:

(ASEB ;{Ié;\(é(SE ‘- KEYSTRING= “8cla5b7d"”

CASE 'J":CASE ': KEYSTRING= “74064690"
BREAK;

CASE ‘K-CASE 'k'; KEYSTRING= “4474502¢"

Sheet 94 of 128

US 9,208,335 B2

CASE "M': 'm": KEYSTRING= "6283d093";
BREAK:

CASE“N": ‘n’; KEYSTRING= “2744¢3e8":
BREAK:

(ASE"0": ‘o’ KEYSTRING= “304f0c5":
BREAK:

CASE 'P": “p’: KEYSTRING= “b5faba59”:

BREAK:
CASE Q- ‘q’: KEYSTRING= "432ff018";

BREAK:

CASE 'R": 't'- KEYSTRING= “ed9c4981";
BREAK:

(ASES": 's': KEYSTRING= “61784064";
BREAK;

CASE 'T": 't KEYSTRING= "h450eeae”;

BREAK;
CASE ‘U""u': KEYSTRING= "e975639b";

BREAK:

CASE ’V’:'\I}’E KEYSTRING= "723917a9";
BREAK:

CASE ‘W' ‘w': KESTRING= “801f4eba”;
BREAK:

CASE ‘X': ‘x': KEYSTRING= “fada19f3";
BREAK:

CASE 'Y "y": KEYSTRING= “9aea5a69";

BREAK: BREAK,
CASE 'L'-CASE I': KEYSTRING= “bd0625f0":  CASE'Z" ‘2’: KEYSTRING= “8d7fedee”;
BREAK; BREAK:
}
return KEYSTRING;
}
F16.120

//checks if the inpui matches the correct PIN

if(sb.toString() .equals("3f819158b5560028¢702¢987958596007 3ad26df2c567febb7h50b4caldf13¢1"))

hashVal = true;

FI6. 121
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e ™
BINDING
\ J
Y
s N
LOAD THE RSA BINDING KEY | //loadthe keK info a key slof of the TPM
PAIR WITH KEY BLOBS key.loadKey(srk);
N b

// The data to bhind to this TPM
TcBlobData rawData = TcBlobData.newByteArray(data);

// create enc%phon data object
TdEncData encDala = context
.createEncDataObject(TcTssConstants.TSS_ENCDATA_BIND);

// Perform RSA encryption within the TPM
ENCRYPT AN AES KEY encData.bind(key, rawData);
// Fet bound dafa
TeBlobData boundData = encData.getAttribData
TcTssConstants.TSS_TSPATTRIB_ENCDATA_BLOB,
TcTssConstants.TSS_TSPATTRIB_ENCDATABLOB BI.OB)

// TPMDecData. decrygnDum(boundDutu)
data = boundData.asByteArray();

FI6. 131
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SRK

SRK PROTECTS ATK AND IS ALSO
A REFERENCE POINT FOR AIK

&

[NSERT AUTHORTZATION
AR SECRET T0 PROTECT ALK
i

==

=
s

{

3\&/ STORES ATK I

4 PERSISTENT STORAGE

REGISTER KEY WITH UUID:

Sheet 106 of 128

(ALLSRK:

TClRsaKey stk = context
reateRsaeyObjec{TcTssConstants.155_KEY_TSP_SRK):

//System.out printInfsrk toString()):

/1 set SRK palicy

T(IPoli(a stkPolicy = content
createPolicyObjec(TcTssConstonts.IS5_POLICY_USAGE)
stkPolic.sefSecrei{TcTssConstants.TSS_SECRET_MORE_SHAI,
TeBlobData.newByteArray{TcTssConstants.75S_WELL_KNOWN_SECRET)):
stkPolicy.assignToObject(srk):

ATK CREATION AND USER SECRET (PASSWORD) INSERTION:

Telssluid keKUUID = TeUidFactory.getinstance()
geluidU15K2():

tontext unregisterKey(TcTssConstants. 1SS _PS_TYPE_SYSTEM,
TeluidFactory.gettnstanced) getUuidU1 SK2);

tomexl.re%islerKey{uikKe{, TeTssConstants.15S_PS_TYPE_SYSTEM,
kelrUUID, (lssConstants.155_PS_TYPE_SYSTEM,
TelUidFactory. gefInstance().getUuidSRK()):

FI6. 133

TdRsaKey stk = context cregteRsKeyObject}
TcTssCanstants.TSS_KEY_SIZE_2048 /'I

TcTssConstants.TSS_KEY TYPE_SIGNING /
TelssConstants.ISS_KEY_MIGRATABLE /
TelssConstants.1SS_KEY_AUTHORIZATION):
oikkey.setAttriblint32{TcTssConstants.15S_TSPATIRIB_KEY INFO,
Tdlss(onstants.ISS_TSPATIRIB_KEYINFO_SIGSCHENE,
TcTssConstans.TSS_SS_RSASSAPKCSIVIS_SHAT);

// sef secret for signing key

Strin TPMSi?(nse(ret = J0pfionPane.showinputDiclog(" Plecse create
TPH iigning &y

Authentication secret Herel"):

TeBlobData keyUsageSecret = TeBlobData.newString/ TPMSignsece ;
TeBlobData keyMigrationSecret =
TeBlobData.newByteArray(TTssConstants.TSS_WELL_KNOWN_SECRET);
TdPolkX keyUsgPolicy = context
createPalicyObject{TcTssConstants.TSS_POLICY_USAGE)

TclPolicg keyMigPolicy = context
reatePolicyObjecTcTssConstants.TSS_POLICY_MIGRATION);
keylsgPolicysefSecret{TeTssConstants TSS_SERET_MODE_PLAIN,
keyUsugeSecret);
keyMigPolicy.setSecret{TcTssConstants.TSS_SECRET_MODE_PLAIN,
keyMigrationSecret);

keyUsgPolicy.ossignToObject{akKey);
keyMigPolicy.assignToObject{aikKey):
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UUID REGISTRATION: 32 BITS
TPM RANDOM # UUID

@ OR uum —
i
PRESET UUID &
REGISTER — /
OX

V4
USB
STICK

ALK |
Y l @
REGISTER RANDOM GENERATED UUID:

TeTssluid keyUUID= .
TcUuidFactory.getInstance().generateRandomUuid(); REGISTER SPECIFC UULD EAISTING ON T

confext.registerKey(aikKey, TcTecConstants.TSS_PS_TYPE_SYSTEM,

keyUUID, TeTssConstnts.TSS_PS_TYPE_SYSTEM, TeTssUuid keyUUID = TetuidFadtory.getTnstance().getUuidU15K2X);

Teigfotory.gelnstonce.getidRK()’ ool T 515 P SIS
RETRIEVE THE KEY BY LUID: ol st 5.5 S5
TelluidFactory.getlnstance().getUuidSRK());

TdRsoKey keyPKRetrieved = comexthetKeyByUuid(
TclssConstants.TSS_PS_TYPE_SYSTEM,
TelluidFactory.getlnstance().getUuidU1SK2());
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SPACE-TIME SEPARATED AND JOINTLY
EVOLVING RELATIONSHIP-BASED
NETWORK ACCESS AND DATA
PROTECTION SYSTEM

PRIORITY CLAIM

This application claims domestic priority based upon U.S.
Provisional Patent Application Ser. No. 61/878,694, filed
Sep. 17, 2013, the disclosure of which is hereby incorporated
by reference.

BACKGROUND

The present disclosure relates to systems, components, and
methodologies for providing network access control, foren-
sics capabilities to identify network attackers and compro-
mised clients or servers, enhanced protection for at-rest data
in the event of a network breach, and other network security
features.

Attacks on information networks have been increasing in
frequency and success in recent years. Attack methods are
becoming increasingly sophisticated, and network defense
systems have not kept pace. Intrusion Detection Systems
(“IDS”) and Intrusion Prevention Systems (“IPS”) utilizing
signature- and statistics-based methods are not always suffi-
ciently agile to address modern network attacks. With the rise
of the Internet and computer networks, network security has
become increasingly important. Similarly, increased use by
organizations of centralized secure datacenters has made net-
work security increasingly important.

Yet network attacks persist, showing that existing informa-
tion/cyber security technology is not sufficient. These con-
tinuing attacks are reminders of how vulnerable network-
connected computer systems are, and the regularity with
which they are breached. Many of these breaches are the
result of the exploitation of zero-day and metamorphic
attacks, using previously unseen attack vectors, or metamor-
phic variants of known attacks, to strike at the vulnerable
underbellies of networks.

There has also been an increased prevalence in the rise of
insiders leaking confidential information, as well as employ-
ees losing laptops and mobile devices containing proprietary
information. These activities highlight the need for data net-
works with defenses against this sort of malicious insider
behavior, and for data networks that minimize the effects of
memory-scraping and unauthorized information access.

Cloud and mobile devices have become increasingly
prevalent as well. Their increasing popularity highlights the
need for information to be securely stored and accessible only
by the intended user or authorized users. While passwords
and tokens can offer some protection and authentication, a
password can be compromised by social engineering, key
loggers, or zero-day malware. Additionally, because note-
book personal computers are increasingly used for e-Com-
merce, there is a growing need to make the notebook platform
more trustworthy. In fact, in the mobile computing context,
stolen data is often regarded as being more valuable than the
mobile hardware itself.

SUMMARY

According to the present disclosure, systems, components,
and methodologies are provided for network access control,
forensics capabilities to identify network attackers and com-
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promised clients or servers, enhanced protection for at-rest
data in the event of a network breach, and other network
security features.

Disclosed embodiments address the above-described tech-
nical problems by providing a network security system that
exploits space-time separation—that is, the network security
system implements authentication and protection in multiple
spatial positions, and implements authentication and protec-
tion mechanisms that vary over time in a joint spatial rela-
tionship. For example, file, directory and user are identified
and protected using a space-time varying identity instead of a
fixed identity. The use of space-time separated and jointly-
evolving relationships provide network defenses that can
defend against a variety of attacks, including zero-day and
metamorphic attacks.

In illustrative embodiments, the disclosed systems, com-
ponents, and methodologies utilizing the space-time sepa-
rated and jointly-evolving relationships also include sophis-
ticated traceback and logging features that allow for
identification of an attack’s origin, the attack’s culprits, and
compromised botnets.

In illustrative embodiments, the disclosed systems, com-
ponents, and methodologies utilizing the space-time sepa-
rated and jointly-evolving relationships also provide
enhanced protection of at-rest data stored within the network
and traceback to the source of leakage.

In illustrative embodiments, the disclosed systems, com-
ponents, and methodologies accept a request by a user to
access data stored in a database; identify a sequence of secu-
rity agents that will participate in authenticating the access of
the data by the user; generate a sequence of passwords; check,
at each one of the servers, a corresponding one of the pass-
words; determine that the user is permitted to access the data
if all the servers accept the corresponding password; and vary
the passwords over time. The security agents provide mutual
support for each other using the space-time varying relation-
ship. Since it is infeasible for attackers to compromise the
space-time varying relationship, even when attackers become
the superuser of any agent or client using zero-day attacks;
when attackers attempt to steal protected resources, the attack
will result in violating the space-time varying relationship.
Hence, the attack and data leak can be prevented. Further-
more, zero-day attacks involved in the attempt can be identi-
fied in real time.

Disclosed embodiments also address the above-described
technical problems by providing systems, components, and
methodologies that enhance security by splitting sensitive
information (e.g., files or folders) into encrypted components
and storing each encrypted component in respective spatially
separated memory positions. Information regarding positions
at which the data is split may be stored in a map, which itself
is split into encrypted components stored in respective spa-
tially separated memory positions. In illustrative embodi-
ments, space/time-varying identifiers are assigned to each
encrypted component of the data, and the space/time-varying
identifiers are used to authenticate whether a given user is
authorized to access the data. This provides a fine-grained
access control in an automatic manner, even for shared data.
Using space/time-varying identifiers and associated protec-
tion (such as Mutated ciphertext based on space/time-varying
relationship), data leak can be prevented and any insider who
is selling the information will be identified in real time.

In illustrative embodiments, the systems, components, and
methodologies provide authentication by authenticating the
user with multiple devices and passwords.

Disclosed embodiments also address the above-described
technical problems by providing systems, components, and
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methodologies that provide a TPM-enhanced (or equivalent
hardware-based security processor) cloud-based file protec-
tion system, rather than, for example, a solely-software secu-
rity implementation.

The AES-GCM program and the file splitting-merging pro-
gram work mutually with each other. They both can be per-
formed multiple times based on the required security
strength. First, after the targeted files are encrypted and
authenticated, then the encrypted file is split and the file
pieces are distributed to the mobile device and PC as well as
datacenter servers. Then, the index file will be encrypted and
split into pieces and then distributed to server and the client
PC as well as datacenter servers. The decryption-merging
process is generally an inverse process. The mutated cipher-
text is resistant to crypto side-channel attacks.

Additional features of the present disclosure will become
apparent to those skilled in the art upon consideration of
illustrative embodiments exemplifying the best mode of car-
rying out the disclosure as presently perceived.

BRIEF DESCRIPTION OF THE FIGURES

The detailed description makes reference to the accompa-
nying figures in which:

FIG. 1 depicts an example that explains the benefits and
advantages of space-time separated and jointly evolving rela-
tionship concept involving a military-style restricted area that
uses a challenge-response system to unlock the doors to
restricted areas in accordance with the disclosure.

FIG. 2 shows a use of time separation that may involve a
hash chain in accordance with the disclosure.

FIG. 3 shows three modules of an Intrusion-resilient, DOS-
resistant, Agent-assisted Cybersecurity System (IDACS) that
are interconnected using the space/time relationship and pro-
vide mutual support for each other, including an Access Con-
trolmodule, a Forensics module, and a Distribution module in
accordance with the disclosure.

FIG. 4 provides an overview of the IDACS system archi-
tecture and shows the network entities that compose the
IDACS Network in accordance with the disclosure.

FIG. 5 graphically depicts an exemplary IDACS Network
Access Control procedure in accordance with the disclosure.

FIG. 6 graphically depicts the procedure for calculating a
single OTP,, at Cust,, in accordance with the disclosure.

FIG. 7 shows a graphical representation of an exemplary
network-side authentication and authorization process in
accordance with the disclosure.

FIG. 8 shows how an exemplary network-side authentica-
tion and authorization process (the run_auth_chain( ) algo-
rithm) may be cascaded across N SAs and SSAs to accom-
plish a desired number of authentications in accordance with
the disclosure.

FIGS. 9(a), 9(b), 9(c), and 9(d) provide additional illustra-
tions of the authentication chains in accordance with the
present disclosure.

FIG. 10(a) shows a directed graph representing a seed
reassembly program, used to visualize a proof showing prop-
erties of the exemplary IDACS network security procedures
in accordance with the disclosure.

FIG. 10(b) shows a solution to a Maximum Weight
Directed Path of Specified Length problem, also used to visu-
alize a proof showing properties of the exemplary IDACS
network security procedures in accordance with the disclo-
sure.
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FIG. 11(a) shows a graph representing a memory reassem-
bly problem, used to visualize a proof showing properties of
the exemplary IDACS network security procedures in accor-
dance with the disclosure.

FIG. 11(b) shows a solution to a Maximum Weight Path of
Specified Length problem, also used to visualize a proof
showing properties of the exemplary IDACS network secu-
rity procedures in accordance with the disclosure.

FIG. 12 shows that file fragments and probabilities can be
used to form a complete undirected graph, where the file
fragments are represented by vertices in the graph and the
probabilities between any two fragments are represented by a
weighted graph edge in accordance with the disclosure.

FIG. 13 shows a graph problem having uniform distribu-
tion of edge weights in accordance with the disclosure.

FIG. 14 shows a graph problem with relatively few high-
weight edges in accordance with the disclosure.

FIG. 15 shows an analysis of the exemplary IDACS net-
work based on a battery of tests, and shows the proportions of
data samples that pass each test in graph form in accordance
with the disclosure.

FIG. 16 shows a simulation network to demonstrate the
exemplary IDACS network’s capabilities in accordance with
the disclosure.

FIG. 17 shows simulation results for the exemplary IDACS
network, and shows that the Attack Detection Ratio is fairly
constant across network sizes in accordance with the disclo-
sure.

FIG. 18 shows a set of tests for the exemplary IDACS
network performed to test the system under an SSA “full
compromise” mode in accordance with the disclosure.

FIG. 19 demonstrates the performance of the IDACS sys-
tem under casualties in accordance with the disclosure.

FIG. 20 shows the results of tests performed to test the
system under SSA compromise in accordance with the dis-
closure.

FIG. 21 shows the average attack traceback time for an
IDACS system with 1 SSA and no SAs or SSAs compromised
in accordance with the disclosure.

FIG. 22 and FIG. 23 show the average traceback times for
different networks, one with one SSA, and one with two
SSAs.

FIG. 24 depicts an attempt to attack the IDACS data center
through a direct attack in accordance with the disclosure.

FIG. 25 depicts an attempt to attack the IDACS data center
through a botnet attack in accordance with the disclosure.

FIG. 26 shows that if there is even one loyal SA, in the
authentication chain of an exemplary IDACS network imple-
mentation, the attacker does not have access to the Seed-
oheeded to calculate OTP, in accordance with the disclosure.

FIG. 27 shows the situation in which the last SSA in an
authentication chain is also a traitor in accordance with the
disclosure.

FIG. 28 shows a situation in which only one SA or SSA in
the approach or return authentication chain is loyal, and that
an attack is prevented in accordance with the disclosure.

FIG. 29 presents a block diagram representation of an
algorithm that invokes the IDACS real-time digital forensics
suite in accordance with the disclosure.

FIG. 30 shows the format of exemplary log records in
accordance with the disclosure.

FIG. 31(a) shows an exemplary detected attack packet log
record in accordance with the disclosure.

FIG. 31(b) illustrates how distributed storage may assist in
attack traceback in accordance with the disclosure.
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FIG. 32 shows an exemplary log record in which the digital
forensics suite searches for “Remote Terminal” packets in the
security logs that were sent by the root traitor Client in accor-
dance with the disclosure.

FIG. 33 demonstrates how different PID_ can be calculated
using different combinations of cryptographic seeds and xbits
in accordance with the disclosure.

FIG. 34 graphically illustrates the handling of the XV used
a network-side authentication and authorization process in
accordance with the disclosure.

FIG. 35 shows that multiple iterations of a network-side
authentication and authorization process are called to form a
complete authentication chain in accordance with the disclo-
sure.

FIG. 36 shows the average attack traceback time for an
IDACS network with 1 SSA in accordance with the disclo-
sure.

FIG. 37 and FIG. 38 show the Attack Traceback Time and
Botnet Detection Time for an IDACS network, one with 1
SSA, and one with 2 SSAs in accordance with the disclosure.

FIG. 39 shows the percentage of the active SAs and SSAs
in IDACS that are traitors for a scenario in which whenever an
access-DB-attack is detected and prevented, one or more
traitor Cust,,, SA,, or SSA_ is identified in accordance with
the disclosure.

FIG. 40 shows the percentage of active SAs and SSAs that
are traitors for a scenario in which there are 20 different
zero-day turn-traitor-attacks used to turn machines into trai-
tors in accordance with the disclosure.

FIG. 41 shows the percentage of active SAs and SSAs that
are traitors for a scenario in which the attacker begins with 20
different zero-day turn-traitor-attacks and 20 metamorphic
variants of each zero-day attack in accordance with the dis-
closure.

FIG. 42 shows the percentage of active Cust,, that are
controlled by the attacker across the simulation for the difter-
ent above-mentioned scenarios in accordance with the disclo-
sure.

FIG. 43 shows an average number of access-DB-attacks
that were successfully passed through IDACS with the help of
traitor SAs and SSAs in accordance with simulation runs in
accordance with the disclosure.

FIG. 44 illustrates a mechanism by which Xbits are
removed from the cryptographic keys in accordance with the
disclosure.

FIG. 45 shows that pieces of the ciphertext are removed
and stored in the IDACS datacenter in accordance with the
disclosure.

FIG. 46 shows an additional security measure, in which the
encryption/Xbits/Xslices can be applied in multiple layers to
protect high-sensitivity data in accordance with the disclo-
sure.

FIG. 47 demonstrates how transforms are used to divide the
ciphertext into a block of Xslices and a block of ciphertext in
accordance with the disclosure.

FIG. 48 shows an exemplary method of data segmentation
of a single file. Rather than encrypting a file in a single
“block”, the file can be divided into multiple “segments” (e.g.
one page of the file equates to one segment) in accordance
with the disclosure.

FIG. 49 shows a file directory tree in which different levels
of folders correspond to the “navigation” file in FIG. 48 in
accordance with the disclosure.

FIG. 50 shows a user retrieving a single data file from a File
Directory Tree in accordance with the disclosure.
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FIG. 51 and FIG. 52 demonstrate “splitting” problems,
used to visualize aspects of proofs showing advantages of the
illustrative IDACS network in accordance with the disclo-
sure.

FIG. 53 shows the splitting problem represented in terms of
graph theory, used to visualize aspects of proofs showing
advantages of the illustrative IDACS network in accordance
with the disclosure.

FIG. 54 shows a maximum weight path, used to visualize
aspects of proofs showing advantages of the illustrative
IDACS network in accordance with the disclosure.

FIG. 55 shows the situation in which the edge weights in
the graph are relatively uniform, where the complexity of
finding the Maximum Weight Path is close to the worst-case
scenario, to visualize aspects of proofs showing properties of
the exemplary IDACS network security procedures in accor-
dance with the disclosure.

FIG. 56 shows the situation where the edge weights are not
relatively uniform, where an algorithm (or a human analyst)
can significantly reduce the complexity of finding the Maxi-
mum Weight Path by picking out the high-weight edges that
are more likely to be part of the solution, to visualize aspects
of proofs showing properties of the exemplary IDACS net-
work security procedures in accordance with the disclosure.

FIG. 57(a) shows the proportion of passing NIST tests for
an exemplary IDACS network for a first data set, which
represents a “matched” Xslice and ciphertext in accordance
with the disclosure.

FIG. 57(b) shows the proportion of passing NIST tests for
an exemplary IDACS network for a second data set, which
represents a “mismatched” Xslice and ciphertext (or two con-
catentated Xslices or ciphertext segments that were not adja-
cent in the original ciphertext) in accordance with the disclo-
sure.

FIG. 58 illustrates the Segmented File Directory Tree used
in simulations of the illustrative IDACS network in accor-
dance with the disclosure.

FIG. 59 shows a comparison of the results of IDACS Net-
work loyalty for a given Contained Network simulation run
and a given Runaway Network simulation run in accordance
with the disclosure.

FIG. 60 shows the percentage of the File Directory Tree
stolen by the attacker averaged across 9 Contained Botnet
simulation runs, compared to the same data for a single Run-
away Botnet simulation in accordance with the disclosure.

FIG. 61 and FIG. 62 show the percentage of the total Data
File Segments in IDACS that were successfully stolen by
Contained Botnets and Runaway Botnets in accordance with
the disclosure.

FIG. 63 and FIG. 64 show when File Data Segments were
retrieved during the simulation, and when they were detected
as having been stolen in accordance with the disclosure.

FIG. 65 shows the success rate for identifying every Cust,,
that was ever turned Traitor for Contained and Runaway
Botnet simulations in accordance with the disclosure.

FIG. 66 shows an exemplary IDACS implementation setup
that has been tested. However, the IDACS network can be
scaled to any size desired (though preferably, 1 SSA, 2 SAs,
and 1 DB minimum are provided) in accordance with the
disclosure.

FIG. 67 (a) through (d) show exemplary Command Line
Interface (CLI) programs implemented in Java, which can be
used for various software components, such as all IDACS
Network elements (SAs, SSAs, and Databases) and the User
Badge (Badge.) in accordance with the disclosure.



US 9,208,335 B2

7

FIG. 67 (e) shows an exemplary client implementation
implemented as a CLI program in accordance with the dis-
closure.

FIG. 67 (f) shows a second exemplary Client Device imple-
mentation, in the form of an app that runs on a BlackBerry
9800 simulator available from RIM in accordance with the
disclosure.

FIG. 68 (a) shows a simulated attacker attempts a Data
Write operation, having stolen the User Password and the
Client Device, but not the User Badge (the Badge PIN is
bundled with the User Badge in this particular implementa-
tion). FIG. 68 (b) shows that due to the missing cryptographic
seeds residing on the User Badge, several of the PIDs (PID,)
cannot be formed correctly; these incorrect PIDs are detected
by an SA, and the attack is flagged. FIG. 68 (¢) shows that
based on the cryptographic seed space separation and PID
formation in this particular IDACS implementation, the digi-
tal forensics suite is able to determine correctly that the User
Password and Client device were stolen or cloned in accor-
dance with the disclosure.

FIG. 69 shows a BlackBerry implementation of IDACS
encryption and distributed storage in accordance with the
disclosure.

FIG. 70 shows an NP-complete reduction path to visualize
aproof showing properties of exemplary IDACS networks in
accordance with the disclosure.

FIG. 71 shows an overview of factors incorporated into a
network security design, including what the user knows, what
the user owns, where the encrypted pieces are, and encryption
in accordance with the disclosure.

FIG. 72 shows a visual representation of an exemplary
methodology by which a user can protect a folder through
splitting in accordance with the disclosure.

FIG. 73 shows the different modules that can be used to
design this security scheme in accordance with the disclosure.

FIG. 74 visually depicts the process of generating a key in
accordance with the disclosure.

FIG. 75 shows the function of a SaltGen function in accor-
dance with the disclosure.

FIG. 76 depicts the process of protecting a salt in a visual
form in accordance with the disclosure.

FIG. 77 shows an overview of the protection process in
accordance with the disclosure.

FIG. 78 depicts a map that is created with the location of
each split so recovery is possible in accordance with the
disclosure.

FIGS. 79-80 show a process by which the encrypted splits,
once created, are randomly sent to different devices, and the
location of each device is stored in a map in accordance with
the disclosure.

FIG. 81 shows a process by which the map is protected by
systemically storing and encrypting parts of the map among
the devices in accordance with the disclosure.

FIG. 82 shows how the map is reconstructed in accordance
with the disclosure.

FIG. 83 shows how the key is used to decrypt the informa-
tion after the splits are rejoined in accordance with the dis-
closure.

FIG. 84 shows a network diagram of the devices in accor-
dance with an exemplary network setup used to test the per-
formance of exemplary implementations in accordance with
the present disclosure in accordance with the disclosure.

FIG. 85 shows how the salt, folder, and map protection
strengths are found in accordance with the disclosure.

FIG. 86 shows that three devices, a PC, a server, and a
mobile Android device, and their corresponding programs are
started in accordance with the disclosure.
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FIG. 87 shows the split files among its different locations in
accordance with the disclosure.

FIG. 88 shows other features contemplated within the
scope of'this disclosure, including more authentication meth-
ods such as biometrics or smart card, encrypted data stored on
multiple cloud servers, and a mobile device to have the data
available to users anywhere at any time in accordance with the
disclosure.

FIG. 89 shows an exemplary cloud storage system for use
with personal devices. Trusted Computing utilizing TPM
offers advantages not present in alternative network security
implementations in accordance with the disclosure.

FIG. 90 shows a block diagram of a security system in
accordance with the present disclosure.

FIG. 91 shows an overview of the protection and unpro-
tection processes in accordance with the present disclosure.

FIG. 92 illustrates the processes and 1/O of Protection in
accordance with the present disclosure.

FIG. 93 illustrates the processes and I/O of Unprotection in
accordance with the present disclosure.

FIG. 94 is a flow diagram of protection process in accor-
dance with the present disclosure.

FIG. 95 is a flow diagram of the un-protection process
corresponding to the protection process of FIG. 94 in accor-
dance with the present disclosure.

FIG. 96 shows a user registration I/O flow in accordance
with the present disclosure.

FIG. 97 shows a user account registration process, which
generally refers to the user creating the logon password for
authorized use of the application in accordance with the
present disclosure.

FIG. 98 and FIG. 99 show operations taking place after the
user account registration in accordance with the present dis-
closure.

FIG. 100 shows a random number table generation dia-
gram for use in an exemplary password protection scheme in
accordance with the present disclosure.

FIG. 101 depicts the overall logon system process in accor-
dance with the present disclosure.

FIG. 102 shows an exemplary process for deriving a master
key in accordance with the present disclosure.

FIG. 103 shows an encryption process in accordance with
the present disclosure in accordance with the present disclo-
sure.

FIG. 104 shows a splitting process in accordance with the
present disclosure.

FIG. 105 shows a merging process in accordance with the
present disclosure.

FIG. 106 shows the generation of an index file in accor-
dance with the present disclosure.

FIG. 107 shows index file splitting in accordance with the
present disclosure.

FIG. 108 shows index file merging in accordance with the
present disclosure.

FIG. 109 shows that after the index file encryption and split
processes, file pieces and index file pieces will be distributed
on the server, the client PC and the Android Device in accor-
dance with the present disclosure.

FIG. 110 shows a depiction of the encryption-splitting
process in accordance with the present disclosure.

FIG. 111 shows a depiction of the merging-decryption
process in accordance with the present disclosure.

FIG. 112 shows the protection of the Storage Root Key in
accordance with the present disclosure.

FIG. 113 shows the operations of binding key creation and
key binding process inside TPM in accordance with the
present disclosure.
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FIG. 114 shows TPM key unbinding process in the unpro-
tection process in accordance with the present disclosure.

FIG. 115 shows an AIK generation and broadcast method-
ology in accordance with the present disclosure.

FIG. 116 shows a diagram of an identity attestation process
in accordance with the present disclosure.

FIG. 117 shows a generic system architecture for a Per-
sonal Computer (PC) defined by TCG in accordance with the
present disclosure.

FIG. 118 shows a logical block diagram of a TPM. As a
building block of a trusted platform, TPM components are
trusted to work properly without additional oversight in
accordance with the present disclosure.

FIG. 119 shows the TPM key hierarchy, called tree of trust,
where every TPM key has a parent key in the layer above in
accordance with the present disclosure.

FIG. 120 shows a method for the password digit to random
number sequence mapping in accordance with the present
disclosure.

FIG. 121 shows the hash value stored on the server side in
the situation where the password is “sh05” in accordance with
the present disclosure.

FIG. 122 shows an overview of the password verification
process in accordance with the present disclosure.

FIG. 123 shows an exemplary implementation of a master
key generation method in accordance with the present disclo-
sure.

FIG. 124 shows an exemplary implementation of an
encryption key generation method in accordance with the
present disclosure.

FIG. 125 illustrates an exemplary file encryption imple-
mentation in accordance with the present disclosure.

FIG. 126 illustrates an exemplary file decryption imple-
mentation in accordance with the present disclosure.

FIG. 127 shows an exemplary implementation for a file
split in accordance with the present disclosure.

FIG. 128 shows an exemplary implementation for a file
merge in accordance with the present disclosure.

FIG. 129 shows an exemplary implementation for the ran-
dom number generator in accordance with the present disclo-
sure.

FIG. 130 illustrates an exemplary implementation of bind-
ing key creation in accordance with the present disclosure.

FIG. 131 illustrates an exemplary implementation for bind-
ing in accordance with the present disclosure.

FIG. 132 illustrates an exemplary implementation for
unbinding in accordance with the present disclosure.

FIG. 133 illustrates an exemplary implementation for
Attestation Identify Key generation in accordance with the
present disclosure.

FIG. 134 provides an overview of an exemplary UUID
registration process in accordance with the present disclo-
sure.

FIG. 135 provides an overview of an exemplary identity
attestation implementation in accordance with the present
disclosure.

FIG. 136 shows the Trusted Computing Group Software
Stack layers to provide usability, functionality and abstrac-
tion in accordance with the present disclosure.

FIG. 137 shows the main components of the Trusted Core
Service (TCS) and their interactions in accordance with the
present disclosure.

FIG. 138 shows how the TSP and the TCS can communi-
cate either via local method calls or via the Simple Object
Access Protocol (SOAP) interface in accordance with the
present disclosure.
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FIG. 139 shows an overview of TSPI in accordance with
the present disclosure.

FIG. 140 shows a network diagram used in connection with
exemplary implementation in accordance with the present
disclosure in accordance with the present disclosure.

FIG. 141 shows a screen display in which a user can input
a server IP address on a client PC in accordance with the
present disclosure.

FIG. 142 shows a screen display in which a user can input
aserver address on the Android Device in accordance with the
present disclosure.

FIG. 143 and FIG. 144 show screen displays in which, after
the server IP has been input, a user may click “OK” on both
devices and then the password input window will be shown on
both the client and the Android Device in accordance with the
present disclosure.

FIG. 145 shows a screen display on the server side, in
which the server is ready to receive the random number
sequences that represent the password input in accordance
with the present disclosure.

FIG. 146 and FIG. 147 show screen displays by which the
password can be input on both the client PC and the Android
Device one by one in accordance with the present disclosure.

FIG. 148 illustrates the server side, where the sent random
number sequences are received and stored into a random
number sequence string based on the order of arriving time in
accordance with the present disclosure.

FIG. 149 illustrates a screen display in which, after the
password input has finished on the Client and the Android
device, the user can click the “finish” button on the Client
password input window in accordance with the present dis-
closure.

FIG. 150 shows a screen display in the situation after
pressing the “Finish” button on the Android Device in accor-
dance with the present disclosure.

FIG. 151 shows a screen display in which clicking the
“OK” button results in the cryptographic window being
shown on the client side in accordance with the present dis-
closure.

FIG. 152 shows a screen display in which, on the Android
side, after the password has been verified, the next crypto-
graphic window will be shown in accordance with the present
disclosure.

FIG. 153 shows a screen display in which, upon pressing
the “Protect” button, the file chooser will be open foruser, and
the user can select the file that will be encrypted in accordance
with the present disclosure.

FIG. 154 shows a screen display with a confirmation box
that will pop up after the files have been chosen, after the user
clicks the “Open” button, and after the protection process
starts and the AES-GCM encryption and file splitting process
take place in accordance with the present disclosure.

FIG. 155 shows a screen display in which, after a user
clicks “OK” and within 15 seconds, the user has to click
“Connect” on the Android Device to receive the split file
pieces in accordance with the present disclosure.

FIG. 156 shows a screen display in which a user inputs the
password for the binding key in accordance with the present
disclosure.

FIG. 157 shows a screen display in which a user inputs the
password for the signing key in accordance with the present
disclosure.

FIG. 158 shows a screen display in which, after the Signing
key pair has been generated, the public key and the
index .piece file will be sent to server for storage in accor-
dance with the present disclosure.
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FIG. 159 shows a screen display in which an authentication
secret can be entered in accordance with the present disclo-
sure.

FIG. 160 shows a screen display by which a user inputs the
authentication secret to TPM to unbind the key in accordance
with the present disclosure.

FIG. 161 and FIG. 162 show screen displays after file
pieces are sent back to the client in accordance with the
present disclosure.

FIG. 163 illustrates the system’s security dependency in
accordance with the present disclosure.

FIG. 164 shows an exemplary industrial network in accor-
dance with the present disclosure.

FIG. 165 shows how an illustrative IDACS network topol-
ogy described above may be used for Industrial Control Sys-
tems in accordance with the present disclosure.

DETAILED DESCRIPTION
Glossary

Claim Terminology

Access Control List: One or more files or other program-
matic representations that indicate which users or clients are
permitted to access which respective pieces of information
stored in one or more databases.

Client Security Ticket: A programmatic representation that
includes one-time passwords, PIDs, and a merchandise
request.

Cryptographic seed information: A value, such as a num-
ber, thatis provided as an input to a mathematical operation to
generate a security token. For example, one or more seeds
may be provided as an input to a hash operation to generate a
one-time password or a Pseudo-ID.

Database: A system or component containing computer-
readable memory that stores data of interest to one or more
users in a programmatically organized manner.

Log records: One or more files that contain information
regarding network usage, including records of the clients or
servers over which given data packets have traversed.

Map: A programmatic representation capable of being
stored in computer-readable memory that contains the
memory positions at which respective components of a data
unit, such as a file or folder, are stored.

Network Security Ticket: A programmatic representation
of messages passed between servers that include client secu-
rity tickets and Xchain values.

One-time password: A password taking on a value capable
of authenticating a user or client with a server either once or
for a predetermined time subsequent to a first use of the
password value. A one-time password may repeatedly take on
new values capable of authenticating a user or client with a
server subsequent to expiration of a given password value.

Password: A sequence of identifiers, such as characters,
numbers, or words, that are uniquely associated with one or
more users and that are used to identify, confirm the identity
of, or authenticate actions taken by the one or more users.

Server: A system or component that includes software
executing on hardware and that performs services in response
to requests from one or more users or clients. Multiple servers
may be provided in separate respective hardware units or
multiple servers may be provided as separate software objects
that run on a single hardware unit.

Storing data in spatially separated memory positions: Stor-
ing the data in disparate positions on one or more computer-
readable memory components as compared to where a file
system would store the data in a single write operation. The
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disparate positions may reside on one memory component in
a single device or may reside on multiple memory compo-
nents on multiple different devices, such as for example a PC,
a cloud server, and a smartphone.

Time-dependent authentication vectors: A sequence of
security tokens that vary over time and that are used by
servers to identify, confirm the identity of, or authenticate
other services.

Time-varying identifier: A security token that varies over
time and that is used by servers to identify, confirm the iden-
tity of, or authenticate actions taken by the one or more users.
For example, the time-varying identifier may vary after the
lapse of a predetermined period of time, after transmission of
a data packet, after a request from a user to access data has
been serviced, or after a user logs off from a usage session.

Trusted Platform Module: A security chip, embodied in
hardware, that can perform security operations, including to
create and store cryptographic keys.

Other Terms Appearing in Disclosure

Binding: Encrypting a message using a key.

Botnet: A group of computers compromised by an attacker.

Client/client computing device: A device containing soft-
ware, memory, and a processor that is accessed by a user to
interface, directly or indirectly, with a database. For example,
a client/client computing device may include a PC, laptop,
workstation, or smartphone.

Customer: A programmatic representation of a combina-
tion of a user and/or client and one or more security tokens
associated with the user and/or client.

Location: A physical computing device. Examples of loca-
tions include clients, servers, and databases.

Merchandise Request: A programmatic representation of
the type of data request a user seeks to perform. For example,
a merchandise request may be to read, write, or execute
operations on data in a database.

NP-complete problem: A problem for which, in a worst-
case scenario, there is no known algorithm that can solve the
problem in polynomial time. Generally, if a problem is NP-
complete, there is no known algorithm for solving all
instances of the problem efficiently in less than exponential
time.

Pseudo-ID (PID): A unique identifier used for identifica-
tion or authentication that may change over time and that is
generated through a mathematical operation based on a per-
manent identifier. For example, a PID may be used to identify
a user, a client, an application, content, or pieces of content.

Security Agent: A type of server that provides network
security functionality in connection with a user request to
access data and that is in networked communication with one
or more other security agents or clients.

Security token: A physical object or programmatic con-
struct that is used to identify, confirm the identity of, or
authenticate one or more users. Examples of security tokens
include passwords, PIDs, PINs, badges, and smart cards.

State: Memory contents of a location or virtual location, or
the combination of contents of locations or virtual locations.

Super Security Agent: A type of server that provides net-
work security functionality and is in networked communica-
tion with one or more security agents, super security agents,
or databases.

Super state: A type of state that is a combination of states.

Transform: A mathematical operation which accepts a set
of states and/or locations or virtual location as inputs and
produces a set of states and/or locations or virtual locations as
outputs.
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User Agent Software: Software that runs on a client and
that interfaces with security agents, super security agents,
and/or databases.

Virtual location: A software object with memory storage
and data processing capabilities. A virtual location is capable
of residing in one or more different physical locations.

Xchain values: Values that are the product of mathematical
operations and used by servers to identitfy, confirm the iden-
tity of, or authenticate actions taken by other servers.

Slave device: A member of a botnet.

Xslices: Portions of data removed from encrypted cypher-
text and stored separately, in either contiguous or non-con-
tiguous locations.

Xbits: Bits of seeds that are removed from seeds and stored
in a separate location.

End of Glossary

The figures and descriptions provided herein may have
been simplified to illustrate aspects that are relevant for a clear
understanding of the herein described devices, systems, and
methods, while eliminating, for the purpose of clarity, other
aspects that may be found in typical devices, systems, and
methods. Those of ordinary skill may recognize that other
elements and/or operations may be desirable and/or neces-
sary to implement the devices, systems, and methods
described herein. Because such elements and operations are
well known in the art, and because they do not facilitate a
better understanding of the present disclosure, a discussion of
such elements and operations may not be provided herein.
However, the present disclosure is deemed to inherently
include all such elements, variations, and modifications to the
described aspects that would be known to those of ordinary
skill in the art.

At least one disclosed embodiment utilizes the concept of
a space-time separated and jointly-evolving relationship to
provide network defenses that can defend against attacks
including zero-day and metamorphic attacks. A description
thereof may be provided with reference to an exemplary
implementation called the Intrusion-resilient, Denial-of-Ser-
vice resistant, Agent-assisted Cybersecurity System
(IDACS), but it should be understood that the IDACS imple-
mentation described herein is merely an illustrative example
in accordance with the present disclosure.

In one respect, according to illustrative embodiments, net-
work security systems may be designed by mathematically
defining “correct” network access behavior for protected
information and services, and blocking all other behavior.
The mathematically-governed access behaviors may provide
sufficient complexity to be unpredictable to attackers, but
may be easily verified by the security system. This design
may provide three mathematically-related capabilities: 1) rig-
orous but fast network access control; ii) efficient real-time
forensics capabilities; and iii) further protection of at-rest
data in case of a network breach.

The mathematical design that provides this level of protec-
tion may be based on the theory of the Space-Time Separated
and Jointly Evolving relationship. This theory calls for space-
time evolving relationships between authentication creden-
tials, file/database systems, and protected data in the realms
of space and time to render the breaking of the access control
system mathematically infeasible. Furthermore, this space-
time separated and evolving relationship may be encoded into
network application layer packets, and become a means for
rapidly tracing attacks back to the source attacker, thus pro-
viding real-time forensics capability. The relationship may
also determine the storage locations of protected data (e.g., in
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a cloud) and authentication credentials (e.g., on security
tokens) in a time-evolving manner so that it becomes infea-
sible for attackers to decode the dynamic relationships.
Hence, three distinct capabilities (or modules) of a security
system may be described by a single principle of the space-
time separated and evolving relationship.

IDACS leverages the space-time separated and jointly-
evolving relationship to defend against these types of leaks of
at-rest data. It also provides detection, traceback and account-
ability for the sources of data leaks. By separating encrypted
data into pieces that are useless by themselves and storing
them in separate and time-changing locations, IDACS can
greatly increase the security of stored data. Herein is provided
the principles and methods by which IDACS provides this
data security, and it will provide proofs for the mathematical
strength of these methods. Additionally, simulations will
demonstrate the real-world effectiveness of such a system,
even in the presence of a high number of insider traitors.

As mentioned above, IDACS may provide network secu-
rity in three key areas: attack detection and prevention, digital
forensics to identify the origin of the attack, and deep protec-
tion of at-rest encrypted data in case of a successful network
breach and traceback to the source of leakage. IDACS com-
bines these three aspects into a complex space-time relation-
ship that provides mutual reinforcement between these
aspects. A mathematical analysis of IDACS reveals that sev-
eral facets of its network defense are NP-complete, present-
ing a potential attacker with an incredibly complex problem
to solve. Multiple simulations of a fielded IDACS system
demonstrate the high attack detection rate, network traitor
identification rate, and data protection capabilities provided
by this system.

FIG. 1 depicts an example that explains the benefits and
advantages of space-time separated and jointly evolving rela-
tionship concept involving a military-style restricted area that
uses a challenge-response system to unlock the doors to
restricted areas. In this example, any user U must carry an
electronic codebook CB which contains a list of challenges
and responses. This list is generated from a few cryptographic
seeds unique to U as well as the U’s PIN, the state of CB, and
the state of the current door. Each door between restricted
areas presents U with a challenge code; U must use CB to
locate the corresponding response code to open the door. As
soon as U opens the door, the state of the door and the state of
CB are pseudo-randomly changed with forward secrecy,
resulting in a new challenge-response list if U attempts to
re-open this door. Additionally, the cryptographic seeds asso-
ciated with U residing on CB are changed at regular time
intervals (e.g., At=1 minute) with forward secrecy; these
changes are propagated to all doors in the system. Each door
presents U with multiple challenges, and multiple doors must
be opened to access different restricted areas. Additionally,
the system maintains logs of the histories of the CB state, the
door states, and the challenge-response pairs; if an attacker A
attempts to open a door using an older, stolen challenge-
response pair, the door system can compare this pair to all
previous challenge-response pairs to trace back where and
when A stole this pair, thus identifying security breaches in
the system.

IDACS similarly implements the concept of the space-time
separated and jointly evolving relationship to achieve a high
level of security in computer and information networks.
Three aspects of IDACS facilitate this functionality. First, the
space-time separated and evolving relationship is used as a
basis for the IDACS Network Access Control protocol. By
using multiple space-separated and time-evolving items for
identifying an information or service access, e.g., file name
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and user ID, IDACS can efficiently allow legal access and
block illegal access to the IDACS network. Second, the math-
ematical properties of the space-time separated and evolving
relationship of the IDACS Network Access Control protocol
provide a number of built-in forensics capabilities. Attacks by
unauthorized users can be detected, blocked, traced back to
the origin of the attack, and analyzed to determine what
authentication items have been compromised, all in a very
quick and efficient manner using the properties of this rela-
tionship. Third, IDACS uses the space-time separated and
time-evolving relationship to protect at-rest encrypted data
stored on network-connected devices (e.g., in the cloud or on
PCs or mobile devices such as tablets or smartphones).
IDACS uses jointly space-separated and time-evolving stor-
age to store critical pieces of at-rest ciphertext in the IDACS
network so that reassembling and decrypting the mutated
ciphertext without access to the distributed pieces spread in
the cloud is mathematically infeasible.

The space-time separated and evolving relationship aspect
of authentication seeds is transparent to legitimate users, but
it presents a virtually insurmountable barrier to attackers due
to the NP-completeness of generating authentication creden-
tials as well as the encoded file/database systems using space/
time-varying IDs, locations, and protections. Additionally,
this relationship aspect of authentication seeds and states
contributes to the speed of the IDACS forensics capabilities.

Space separation can be understood by way of reference to
computer access systems in which a user is required to have a
password. One method would involve giving each user a
unique password, such as a password tied to a user-specific
username. By issuing different login credentials to different
users, space separation of login credentials is achieved.

Another space separation concept is realized in a computer
access system that has multiple authentication agents. For
example, a system may require a user to authenticate with
several authentication servers. The user may need to authen-
ticate with each authentication server before access is granted
to the system. Each authentication server may require a
unique password or other authentication credential from the
user; thus, possession of multiple passwords may be required
for the user to use the system. In this manner, space separation
of login credentials may be accomplished.

Time separation can be explained with reference to One-
Time Passwords (OTP). In a OTP authentication system, a
user may be given an OTP that may allow access to the
computer system. Once the OTP has been used, it may be
valid for a short period of time (e.g. t=60 seconds). After the
OTP time period has expired, the OTP may no longer be used
to login, either by a legitimate user or an attacker that has
managed to steal the OTP.

FIG. 2 shows a use of time separation that may involve a
hash chain. In a hash chain, a user and an authentication
server share some secret information. The user is able to login
to the authentication server by hashing the secret information
into an OTP. Once this OTP has been used, it may no longer
be valid for login. Atthe next login session, the User may need
to hash the old OTP with the secret information to form a new
OTP. OTPs are invalid after the first use, so an intercepted
OTP is of no use to an attacker. Even if an attacker manages to
get his hands on a valid, unused OTP, it may be useful for only
one attack; future OTPs may not be able to be derived without
knowledge of the shared secrets.

FIG. 3 shows three modules of IDACS that are intercon-
nected using the space/time relationship and provide mutual
support for each other, including an Access Control module,
a Forensics module, and a Distribution module. The IDACS
network and these modules are discussed in more detail
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below. Generally, the systems, components, and methodolo-
gies discussed herein represent improvements over alterna-
tive systems, including Intrusion Detection and Prevention
systems, many of which use two major methods for attack
detection: signatures and/or statistics. Both these approaches
focus on the characteristics of illegal activity. Intoday’s threat
environment, however, new threats are cropping up at a pro-
digious rate, and many attacks go undetected by signature- or
statistics-based methods. The systems, components, and
methodologies discussed herein, in contrast to alternatives,
apply the idea of space-time separated and jointly evolving
relationships to mathematically define and permit only “cor-
rect” network access. Network authentication and authoriza-
tion are spread across space (e.g., multiple network authen-
tication points) and time (e.g., time-evolving authentication
credentials) with joint evolution between the space and time
parameters to make “correct” network behavior and its his-
tory mathematically infeasible for an attacker to reconstruct.

The systems, components, and methodologies discussed
herein also provide benefits and improvements in connection
with real-time forensics for attack traceback capabilities and
attack report correlation and aggregation capabilities. In con-
trast to alternative systems for digital forensics and attack
report correlation, the space/time relationships exploited in
accordance with the present disclosure have not been previ-
ously leveraged to provide speed and accuracy and to avoid
ambiguity.

The systems, components, and methodologies provide still
other benefits and improvements in connection with distrib-
uted data storage. Whereas alternative distributed data stor-
age systems focus on scalability and redundancy for integrity
and availability, the present disclosure addresses distributed
storage for security purposes.

The following characterizations and notation are used as
the basis for the description of the exemplary IDACS network
discussed herein. As explained, the IDACS network is merely
an illustrative embodiment in accordance with the present
disclosure, and the characterizations provided below are to
facilitate an explanation of the exemplary IDACS network.

Characterization 1: A location for the purpose of this exem-
plary description is a physical device with an associated
physical location. The physical device includes memory stor-
age and data processing capabilities. A virtual location for the
purpose of this exemplary description is a software object
with memory storage and data processing capabilities. A
virtual location is capable of residing in different physical
locations.

Characterization 2: A state for the purpose of this exem-
plary description represents the PID (Characterization 3) and
memory contents associated with a piece of data that can
change over time. It can also represent the memory contents
of a physical location. The relationship between states and
locations is further explained in Characterization 17.

Characterization 3: A location or state may be represented
by a permanent, well-protected ID, or by a time-changing
Pseudo-ID (PID). The PID may be computed according to a
variety of methods. In illustrative embodiments, both a user
and a client are assigned several different permanent IDs upon
registration with the IDACS system. The user and client may
hash these permanent IDs together with other pieces of secret
and time-dependent information to generate time-changing
PIDs. These PIDs may be used for both identification and
authentication when the User attempts to log into the IDACS
system. These PIDs may change between secure communi-
cation sessions as the secret time-dependent information
changes. On user login, the user and/or client may exchange
these PIDs with security agents via an encrypted tunnel.
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According to an embodiment in accordance with the present
disclosure, the PID is derived by

PID (A)=hash(ID(A), crypto
sequence number)

seeds, time-changing
However, other computational techniques for generating
the PID are within the scope of the present disclosure.

Asused herein, PID(A) may also be represented implicitly
as A. Specific exemplary applications of PIDs are discussed
in Characterization 21.
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ity (order) of the elements in the set is one of the attributes of
the set. Changing the ordinality of the members of E creates
a different set E '. Therefore, if E ={E,, E,, E;} and E '={E;,
B, E,}, then E =E ". Unless specified, all sets are unordered.

FIG. 4 provides an overview of the IDACS system archi-
tecture and shows the network entities that compose the
IDACS Network. These items are characterized in Character-
ization 7 to Characterization 16. Given the IDACS Network,
it contains the elements shown in Table 1.

TABLE 1

IDACS System Element:

... which The set
...asetof ... termed are There are of ... Is represented as

Characterization ~ Servers Security Agents  locations. g SAs SA,, xe[1, q]. SA, SA={SA|,SA,,...,SA}

7 (SAs)
Characterization  Servers Super Security locations. n SSAs SSA,, ke[l, n]. SSA, SSA = {SSA,, SSA,,. ..,

8 Agents (SSAs) SSA,}
Characterization ~ Servers Databases locations.  h Databases DB,, ye[1, h] DB, DB = {DB,, DB,,...,DB,}

9
Characterization ~ Humans Users humans.  uUsers, User,,, we[1, u]. User,,  User={User, ..., User,}
10
Characterization ~ Computers/Devices Clients locations.  z Clients, Client,, pe[1, z]. Client, Client = {Client,, ...,
11 Client,}
Characterization ~ Smartcards Badges locations. y Badges Badge, Te[1, y]. Badge. Badge = {Badge,, ...,
12 Badge, }
Characterization  user passwords states. 0 User Passwords Pwdg, 0¢[1, w]. Pwdg Pwd = {Pwd,, Pwd,, ..., Pwd,}
13
Characterization  Badge PINs states. x Badge PINs PIN,, Ag[1, x]. PIN;, PIN = {PIN,, PIN,, ..., PIN,}
14

Characterization 4: A transform for the purpose of this
exemplary description is a mathematical operation which

accepts a set of states and/or locations as inputs and produces s

a set of states and/or locations as outputs. In this disclosure,
transforms may be represented by the notation F-box( ). In
this notation, the parentheses contain a number of parameters
which are inputs to the transform. The first parameter defines
the actual internal operation of the transform. For example, a
transform that computes a cryptographic hash of the inputs
would be called F-box(hash), with “hash” being represented
as H ash; the remaining parameters would detail the inputs to
the hash function.

output=F-box(H ash, input data)

Transforms may be combined in a particular order to form
new transforms. For example, a given transform may involve
a lookup (1= ookup) followed by a concatenate (€ oncat) of
the outputs of the lookup. Transforms may be combined
according to the following notation:

output=F-box(¥= ookup- € oncat,

input_ 3)

Many transforms make changes to their input superstates
(e.g., S Cust,, as discussed in Characterization 17), although
these changes are abstracted in this notation.

Characterization 5: Some variables discussed in connec-
tion with this exemplary description are a function of other
variables; that is, if the value of variable A is a function of the
values of variable B and time t, then the value of A depends on
the value of B at time t. For the purpose of this exemplary
description, this relationship is represented by the notation
A:A(B, t). This relationship implies that B is the input to an
F-box( ) that is used to calculate the value of output A.

Characterization 6: A set of elements E ={E,, E,, ... E } is
used in this exemplary description to refer to a collection of
elements. An ordered set, for the purpose of this exemplary
description, shall be characterized as a set where the ordinal-

input_1, input_2,
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Certain properties apply for the exemplary IDACS net-
work.
Property 1: In the exemplary IDACS network, the Pwdge

5 Pwdandthe PiN, ePIN are stored in the brains of User eUser,

and need not be stored at any other location. However, cryp-
tographic hashes of all PwdgePwd and all PIN,ePIN are
stored at locations (SAs and SSAs) that are used to verify
these Pwdy and PIN,. This space-separated relationship
allows Pwdg and PIN, to be verified when they are provided
by User,,, without providing useful information (due to the
one-way property of the cryptographic hash) to an attacker
who gains access to a location’s memory contents.

Characterization 15: Given the IDACS Network, when
User,, seeks to use Client, to communicate with the IDACS
servers at time t, Client, downloads a unique User Agent
software program UA, from the network. This UAg handles
communications between Client, and the IDACS servers.
UA, is considered a virtual location. UA is a function of
User,,,, Client,, and time, thus UA,: f(User,,, Client,, t). UA,
is the entity that performs most of the operations on the client
side in the IDACS Network, so the following characteriza-
tions and procedures in this illustrative discussion references
a single UA,.

Characterization 16: Given the IDACS Network, at time t
there are c sets of User,,, Client,, Badge., Pwd,, PIN,, and
UA, (denoted as {User,, Client,, Badge,, Pwdg, PIN,,
UA,}) that are authorized to access the network. These com-
binations are termed Customers Cust,,, 1e[1, c]. Cust,, is
considered a state. Since Cust,, represents a combination of
the other parameters, Cust,: f(User,,, Client,,, Badge,, Pwd,
PIN,, UA,, 0.

Characterization 17: Given the locations characterized in
the IDACS network, some of the following characterizations
depend on the state that describes the configuration and
memory contents of a combination of certain locations. These
states represent a combination of other states as characterized
in Characterization 2, so for purposes of the present illustra-
tive discussion, they are termed super-states. The symbol



US 9,208,335 B2

19

$ represents the super-state covering the entire IDACS sys-
tem, with other symbols representing more narrowly-defined
super-states that are subsets of <5 , e.g., § Client,, represents

the state of Client,, in combination with UAg.

S Clientp:f(CZientp, UAB, )

The characterization of $ depends mainly on the memory
contents of different locations and the results of the lookup
transform as characterized in Characterization 24. Similar

20
notation is used for Badge,, Badge, PIN,, PIN, Pwd,, Pwd,
SA_, SA, SSA, and SSA. These super-states represent the
basis of the space-time separated and jointly evolving rela-
tionship in IDACS.

As explained, the locations, states, transforms, notations,
and characterizations are merely provided to facilitate discus-
sion of the illustrative IDACS network. They are summarized
in Table 2 for reference.

TABLE 2

Summary of Notation

Symbol Name Type Description
SA, Security Agent Location  Network-side authentication machine
SSA, Super Security Location  Network-side authorization machine
Agent
DB, Database Location  Network-side data storage machine
User,, User Human Human User of the IDACS network
Client, Client computer  Location  Client-side computer (laptop, smartphone, etc.)
Badge, User Badge Location  Client-side smartcard security badge
Pwdg User Password Location  Client-side password
PIN;, Badge PIN State Client-side PIN entered into User Badge
UAg User Agent virtual Small software application downloaded from
location IDACS Network to Client computer to perform
security operations
Cust,, Customer State Combination of User,,, Client,, Badge,, Pwdg, PIN;,,
and UAg, authorized to access the ID CS Network
Seed,, Seed,, Seed State Cryptographic seed stored on Client,,, Badger, SA,, or
Seed,, SSA, or derived from Pwdg or PIN;,
Seed, O PIN,,
Seed, O Badge,
S, S Client,, Super-state State Represents a combination of states
< Client
Ticket,, Client Security State Data structure used to send, authenticate, and
Ticket authorize a data or service request from Cust,, to
IDACS Network
Req,, Merchandise State Data request that specifies target data and desired
Request operation
OTP,, OTPy, One-Time State Used to authenticate Cust,, with all SA, in SA
Password (OTP)
PID,, PIDy, Pseudo-ID (PID)  State Used to authorize Cust,, and Req,, with SA and SSA
N Authentication Length of Authentication Chain, i.e. how many SAs
Chain Length and SSAs are in the approach and return
authentication chains
Key(A, B) Shared State Cryptographic key shared between locations A and B
cryptographic key
XV, Xchain value State Cryptographic hash value calculated for
authentication between machines in SA and SSA
TK, Network Security ~State IDACS network message containing Ticket,, and XV
Ticket values
VTN Packet record State Log record of the critical attributes of an IDACS
network message
F-box(Lookup) Lookup transform Transform Based on certain inputs (super-states), returns a
particular ordered set of seeds from a location or
state
F-box(Concat) Concatenate Transform Concatenates a set of objects
transform
F-box(Hash) Flash transform  Transform Performs a cryptographic hash on the inputs
F-box(Next) Next-SA-SSA Transform Calculates the next SA or SSA in the authentication
transform chain
F-box(Insert) Insert Log Record Transform Inserts a packet record \TK\ for received network
transform message TK into a location’s security logs
F-box(Rtrv) Retrieve Log Transform Retrieves a packet record from a location’s security
Record transform logs based on specified search criteria
F-box(Mrand) Random Transform Returns a random byte string
transform
F-box(Offset) Data Block Offset Transform Returns the length of the next Data Block
transform
F-box(XLth) Xslice Length Transform Returns the length of the next Xslice
transform
F-box(SString) Substring Transform Returns a substring of the input string
transform
F-box(Encrypt) Encrypt transform Transform Encrypts the input data with the input key
AOB Notation  Data block A is stored at location/state B
A—=B:C Notation  Location A sends message C to location B
E - {E,E,, ... Notation  Notation indicating a set of objects
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Client-side operations of IDACS. Details are now provided
regarding how the IDACS Network Access Control protocol
is handled for Customer authentication and authorization to
allow customers to access data or services residing on a DB.

Characterization 18: Given the set Cust, for Cust,, to ini-
tiate communications with the IDACS servers (SAs and
SSAs) and perform network actions (e.g., Read/Write/Ex-
ecute a piece of data on DB,), Cust,, will present a Client
Security Ticket Ticket,, to the IDACS network. Ticket,, is
considered a state. Ticket,, is a function of both Cust,, and
time t; thus, Ticket_w:L(Custw,t). Ticket,, is the set containing
the sets OTP,, and PID,, and the state Req,, (all characterized
in the following characterizations); i.e. Ticke%:{OTPw,
PID,, Req,, }.

Characterization 19: Ticket,,, uses a MerchandiseRequest
Req,,, which communicates the specifics of the desired net-
work action. Req,, is considered a state. Req,,,, specifies the
request type (e.g., Read/Write/Execute a piece of data on
DB,), the unique PID for Cust,,, the Content(PID,) tied to the
specified data (as characterized in Characterization 22), and
the data itself. The mechanics of the formation of Req,, also
depend on $ Cust,; Req,,: (-5 Cust,,, PID,).

Characterization 20: Ticket,,, uses a set OTP, of q
One-TimePasswords(OTP) OTP,, xe[1, q]. The One-Time
Password (OTP) may be a per-packet password that authen-
ticates the user or client with an individual security agent. The
client or user may have an authentication relationship with
each security agent, in that each relationship may consist of
an independently established set of keys and sequence num-
ber, which provides space separation. The OTP may be a hash
of previously established keys and sequence number. The
sequence number may increment for each packet; thus, the
OTP may be different for each packet, which provides time
separation. Additionally, the keys may be changed after each
secure session initiated by a client or user, which provides
time separation. Possession of the correct keys, which are
secrets, and the correct sequence number, which is not a
secret, may be used to calculate the OTP.

Since OTP, are data structures, they are considered states.
These OTP,, are used for pairwise authentication between
Cust,,, and each SA, . Each calculated OTP, is a function of
the Cust,, calculating it, the SA,, which will be verifying it,
and time t; thus, OTP, :f{(Cust,,, SA,, i, t). The set OTP, of
OTP, for all SA_, which is calculated by the UA, associated
with Cust,, is represented as OTPw:{OTPl, OTP,, . . .,
OTP,}. OTP,;: f(Cust,,, $ SA, t). Algorithm 2 illustrates an
exemplary procedure by which OTP, is calculated.

Characterization 21: Ticket, uses a set PID, of r
PsuedoIDs(PID) PID,, €€[1, r]. Since PID, are data struc-
tures, they are considered states. These PID, are used for
access control; they verify the identity of Cust,, as well as the
permissions of Cust,, to perform the requested network action
in Req,,, and they identify the information associated with
Req,, residing on DB, Each calculated PID, is a function of
the associated Cust,, and Req,, th%:x €, and time t. Thus,
PID: f(Cust,,, Req,,, €, t). The set PID,, of HD, calculated by
the UA associated with Cust,, to authorize with the network
is represented as PID,~{PID,, PID,, . . . , PID,}. PID,;
f(Cust,,, Req,, ). Algorithm 3 illustrates an exemplary pro-
cedure by which PID, is calculated.

Characterization 22: Given PID,, one of the PID, in PID,,
is tied to the specific piece of data (merchandise) specified in
Req,,. This particular PID, is called for purposes of the
present illustrative discussion the ContentPID; it is repre-
sented by Content(PID,). Generally, each piece of sensitive
information in the database may be identified by a Content ID
(CID) which may be unique both to the information and to
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each user allowed to access that information. A piece of
sensitive information may exist in one place, or it may be split
into several pieces with each piece having a unique Content
ID and residing in different locations on a single database or
in locations across multiple databases, which provides space
separation. In accordance with embodiments disclosed
herein, a user requesting access to the sensitive information
may need the current Content Pseudo IDs (PIDs) that are
associated with the permanent Content IDs. Changing these
Content PIDs after each data access may add more security to
the system through time separation.

The Content PID indicates the data being accessed in a
Read or Execute operation, or establishes a data PID for
future reference in a Write operation. Permission is granted to
different Cust,, to access different pieces of data residing on
DB, ; checking the permissions of Cust,, to access a requested
piece of data is part of the IDACS Network Access Control
mechanism. To protect Content(PID,) for data residing in DB
from attacks against relatively less-protected SAs, the infor-
mation needed to calculate Content(PID,) may in illustrative
implementations reside only on the relatively better-protected
SSAs; in such implementations, only SSAs are capable of
verifying Content(PID,). Such an implementation is reflected
in the discussion of simulations, herein.

Access to sensitive information may also be controlled by
means of authorization privileges (permissions). The SSAs
may maintain an Access Control List, which may specify
which clients and which users are permitted to access which
pieces of sensitive information. The SSAs may also share this
list with the SAs. Whenever an SA or an SSA handles an
information access request, the calling client and/or user may
be checked against the Access Control List for the requested
piece of information.

Pieces of information residing in the database may be tied
to aunique Content ID, and accessible by one or more, though
perhaps not all, user/client combinations, which provides
space separation. When a user attempts to access a piece of
information, the user may be required to provide a collection
of different authorization items proving permission to access
the information. Each SA and SSA may thus possess a copy
of'an Access Control List (ACL), which may contain entries
corresponding to the information on the Database and the
related Content IDs. The ACL record may consist of several
time-varying authorization PIDs, which provides time sepa-
ration, associated with both the information’s permanent
Content ID and the user/client identity, all of which the user/
client may be required to provide correctly to be authenticated
by the SA or SSA. Because the ACL records may change with
space and time, attacks against IDACS may be exponentially
more difficult, as discussed herein.

The ACL may contain entries that contain the following
fields: User PID, Host PID, Source IP Address, Destination IP
Address, Current Application PID, Parent Application PID,
Content PID, Network protocol PID, Host Statement of
Health, Host OS PID, Network path (PIDs of SAs and SSAs),
Valid Time Period when Information Can Be Accessed. All of
the above-mentioned PIDs may be generated by hashing dif-
ferent pieces of information tied to a particular PID, such as
the permanent ID associated with that PID, the time-varying
secret associated with that PID (changed each time a new
client-SA security tunnel is established), a transaction num-
ber that may monotonically increase with each transaction
(read or write operation), and a publically-known permanent
string associated with that type of PID. The different types of
PIDs may equate to the different “flavors™ (F) as discussed
herein. In illustrative embodiments, for the above-mentioned
PIDs, a PID, may be computed in the following way:
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PID,_,*(PID_secret,, ID,, Transaction number,, PID-spe-

cific_string;)

Here, “h? (M)” indicates M being hashed twice. When
known and secret items are hashed together, it may be easier
to reverse engineer the secret items if the known information
is put at the beginning of the hash. Therefore, in this illustra-
tive embodiment, the secrets are placed at the beginning of the
hash. These four items are generated by one of the SSAs and
distributed to the client and relevant SAs and SSAs at the
client’s request. The method for distributing these items dis-
cussed further herein. Additionally, these items may be stored
in a distributed (space-separated) manner on both the client
and SAs. The distributed storage may contribute to the secu-
rity of the system, and may also assist in the traceback algo-
rithms to be discussed herein.

Property 2: Although OTP,, and PID,, are calculated simi-
larly, they serve separate functions in this illustrative embodi-
ment. In this embodiment, the elements of OTP,, are used for
authentication to verify the identity of Cust,, while the ele-
ments of PID,, are used for access control to verify that Cust,,
is allowed to perform the action specified in Req,, on the data
specified by Content(PID,). Thus, in this exemplary imple-
mentation, OTP,, provides space-time separated and evolving
authentication (Property 3), while WDW provides per-cus-
tomer and per-data access control which enforces broader
group-based access policies.

Notation: When a piece of data A is stored at a location or
state B at time t, for purposes of the present description, this
is indicated by the notation A< (B, t). However, the time
parameter is often abstracted, so the notation may be simpli-
fiedto AOB.

Characterization 23: Given Client, every Client,, can store
up to T cryptographic seeds Seed,,, pe[1, T]. Seed,, is consid-
ered to be a state. The set of all Seed,, ¢ Client,, is represented
as Seed O Client ={Seed, ¢ Client,,, Seed, ¢ Client,, . . . ,
Seed, O Client,,}. These relationships are represented by
Seed,, ¢ Client,,: f(Client,,t) and Seed, ¢ Client,,: f(Chent,,
t). All Badge, can also store a set Seed ¢ Badge. of
Seed, ¢ Badge,, so Seed,{ Badge.: f(Badge., t) and
Seed © Badge.: f(Badge,, t). Additionally, Seed, can be
derived from Pwdg and PIN, by applying the cryptographic
hash function to a concatenation of Pwd, or PIN, with
pseudo-random nonces and time-evolving sequence num-
bers. Thus, Seed; O Pwdy: f{Pwdg, t), Seed & Pwdg: f(Pwd,,
1), Seed,, O PIN;: f(PIN;, t), and Seed ¢ PIN,: f(PIN,, t).

Characterization 24: Given the sets Pwd, PIN, Badge, or
Client, each Pwd,, PIN,, Badge., or Client, stores (q+r)
ordered sets Seed 7, or Seed ;. each consisting of j seeds
Seed, O Pwd,,  Seed,OPIN,, Seed,¢Badge,, or
Seed,, © Client,,. Each setis used to calculate one OTP, orone
PID,, respectively. The F-box(lookup) transform takes the
item type (OTP or PID), the index (y or €), the super-state
5 Client,,, < Badge, 5 PIN,, or § Pwd, (which provides
the seeds and states), and § Cust,, (which determines the
order of the seeds in different We\g{opnx and Seed,,,.) as
inputs; and outputs the ordered set of Seed_ which corre-
sponds to the item type and index. This transform is repre-
sented by

%OTP,X <> Clientp:F—box( I’ ookup, ‘9 Cusryp?

OTP, y)
where $ Client, can be replaced by $ Badge., <5 PIN,, or
$ Pwd,, and (OTP, %) may be replaced by (PID, €). For some
combinations of inputs, the output set may be an empty set,

i.e. j=0 and Seed,p,, < Client,=d.
Seed,, ¢ Client,,

<5 Client,,,

Property 3: The members of
Seed, ¢ Badge,, etc. are not necessarily stored consecutively
in their respective locations; they are stored randomly in that
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location’s memory. Additionally, based on the IDACS state
history and nonces, their positions in memory may change in
time with forward secrecy. This provides the space-time sepa-
ration and the space-time joint evolution of IDACS. Because
of this, the F-box(Ys ookup) transform is non-trivial for an
attacker to break (see Theorem 1, below).

Characterization 25: Given a group ofn generic objects O,
0O,, , O, the F-box(concatenate) transform accepts this
group of objects as input and outputs the objects concatenated
into an ordered set. The generic objects may be individual
objects, or they may be sets of objects. In equation notation,
the “concatenate” is represented by € oncat. For example,

Seed oz, ~F-box(€ oncat, Seedorp,, © Client,,
Seed oy, O Badge,, Seedrp, O PIN,,
Seed o, O Pwdg)

OTP, =F-box(€ oncat, OTP,, OTP,, ..., OTP,)

Characterization 26: The F-box(random) transform gener-
ates a random byte array. For this illustrative embodiment, the
array may be 256 bits long (corresponding to the SHA-256
hash algorithm).

XV ,=F-box(M and)

Characterization 27: Given a generic set of inputs, the
F-box(hash) transform applies a cryptographic hash function
(e.g., SHA-256) to a byte array representation of the inputs
and outputs the resulting byte array.

output=F-box(H ash, inputs)

A specific instance of this transform operates as follows.
Given an item type OTP or PID of index y or €, the transform
accepts the item type (OTP or PID), the index (y or €), and the
associated set of seeds i.e Seed,,,, or Seed,, . as inputs.
The output OTP, or PID, is calculated by applying the cryp-
tographic hashto Seed,, ;5 or Seed, . combined with well-
known (system-wide for IDACS and publically known) val-
ues and a time-evolving sequence number. Different but well-
known values and order of the seeds are used for each OTP,,
or PID; thus, each OTP,, or PID, is calculated differently, but
the calculation method is well-known. The time-evolving
sequence number is used to accomplish anti-replay function-
ality of the output.

OTPX:F—box(H ash, 4 Custy? mOTP,XS OTPSx)

Property 4: Due to Property 3, the outputs of the F-box(
- ookup) transform and the composition of Seed,, or
Seed,;, . are drawn from space-separated elements that are
time-evolving with forward secrecy. Additionally, when a
OTP, or PID, is being calculated using Seed,;p, or
Seed,;,. as inputs to F-box(H ash), a time-evolving
sequence number is used as another of the inputs. As a result,
the OTP,, and PID,, that depend on these values are also
space-time separated and jointly evolving. An attacker who
intercepts OTP,, PID,, or any Seed 7, or Seed ;. will be
unable to use them after the sequence number or any of the
Seed,, have changed, as they will be invalid. Additionally, an
attacker cannot use an intercepted OTP,, or PID, to obtain any
information regarding the Seed_ used to calculate them (due
to the one-way property of the cryptographic hash function).

Given Characterization 17, Characterization 24, and the
related Property 3, the following Theorems may be formed as
to show the benefits of the systems, components, and meth-
odologies in accordance with the present disclosure. Both of
these Theorems are proved below:

Theorem 1: Given the F-box(1= ookup) transform, which
takes as inputs (a) a super-state S Client,, < Badge,
<5 PIN;,, or < Pwd, (which contain cryptographic seeds), (b)
the super-state § Cust,,, and (c) an OTP or PID index ((b) and
(c) are used together to determine the identity and order of the
seeds returned by the F-box(¥= ookup) transform). This trans-
form returns an ordered subset of the seeds derived from (a).
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An attacker who wishes to recreate the F-box(¥s ookup)
transform and has access to (c) and all or part of (a) but not (b)
faces an NP-complete problem due to the order of the output
seeds.

Theorem 2: Given the IDACS system and an attacker who
is trying to calculate OTP,, and PID,, without access to the
super-states 5 Client,,, $ Badge,, < SPIN,, $ Pwd,, or
$ Cust,,. Such an attacker must reassemble $ Cust,, (which
contains § Client,,, 5 Badge., &_PIN 5 and $ Pwd,) to suc-
cessfully calculate OTP,, and PID,,. It is an NP-complete
problem for the attacker to reassemble $ Cust,, or any other
super-state.

As mentioned, FIG. 4 illustrates an overview of the IDACS
system architecture and the network entities that compose the
IDACS network are illustrated. As illustrated in FIG. 4, the
IDACS network 100 interacts with users 102, 104, and 106.
Each user has a number of security tokens. For example, users
102, 104, and 106 have respective badges 108, 110, and 112;
respective passwords (PWDs) 114, 116, and 118; and respec-
tive PINs 120, 122, and 124. FIG. 4 shows exemplary security
tokes in the form of badges 108, 110, 112; passwords 114,
116, and 118; and PINs 120, 122, and 124, but other forms of
security tokens, such as smart cards, can be used as well.

The IDACS network 100 includes databases 126. In opera-
tion, the users 102, 104, and 106 seek to access data stored in
databases 126, write data to memory locations in databases
126, and/or execute operations on data stored in databases
126. To do so, the users 102, 104, and 106 access the IDACS
network through client computing devices 128, 130, and 132,
respectively. The users 102, 104, and 106 and the client com-
puting devices 128, 130, and 132 may need to register with the
IDACS network. The IDACS network 100 may include two
sets of servers, security agents 134 and super security agents
136. The IDACS network 100 may include a configurable
number of security agents 134 and super security agents 136,
which may act as security barriers for accessing data in the
databases 126. The data of interest may reside on one of the
database 126 or may be split, as described in more detail
herein, among multiple databases 126.

The security agents 134 and the super security agents 136
play a role in authenticating the users 102, 104, and 106 to
ensure that the users 102, 104, and 106 are authorized to
access the databases 126 and/or are authorized to access or
execute operations on the data of interest within databases
126. In certain embodiments, the client computing devices
128, 130, and 132 may authenticate with each of security
agents 134 individually, with the authentication process being
monitored and further authenticated by the super security
agents 136, providing space separation of authentication.
Authentication credentials to be discussed herein may change
per transaction, per session, and/or per packet, which pro-
vides time separation and joint evolution of authentication
credentials. When the User/Client successfully authenticate
with IDACS, access is granted to the information, which may
be stored in one location on one Database, or may be spread
across multiple Databases (space separation of information).

To interface with the security agents 134, the super security
agents 136, and the databases 126, user agent software com-
ponents 138, 140, and 142 are downloaded from the network
(e.g., from security agents 134, super security agents 136, or
elsewhere) and run on the client computing devices 128, 130,
and 132. In certain embodiments, a different application must
be downloaded for each new session, thus providing the sys-
tem with time evolution. Each application that is downloaded
may have a random, unique Application PID. The security
agents 134 and/or super security agents 136 may maintain
logs detailing which Application PIDs were issued to which
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client computing devices 128, 130, and 132 at which times.
The user agent software components 138, 140, and 142 may
handle all IDACS communication between the client com-
puting devices 128, 130, and 132 and the rest of IDACS.

The security agents 134 and super security agents 136 are
depicted in FIG. 4 as standalone servers, and in such imple-
mentations, may include respective processors, memory
(e.g., RAM), and hard drives. The security agents 134 and
super security agents 136 will generally operate according to
program instructions in the form of computer source code
compiled into object code and stored onto a memory, from
which it is read and executed by a processor. Exemplary
programming languages are discussed below, but it should be
understood that any suitable programming language for
implementing the functionality disclosed below may be suit-
able, e.g., Java, C, C++, scripts, or others.

In other implementations, the security agents 134 and
super security agents 136 may merely reference hardware or
software components that are part of a single device, such as
a router, gateway, or other network-enabled electronics com-
ponent. In such instances, all the network security functions
disclosed with respect to the security agents 134 and super
security agents 136 disclosed herein may be provided within
a single network component.

The databases 126 can be conventional databases, such as
those operating in Oracle®, DB2, or SQL Server environ-
ments. The database 126 may represent cloud storage solu-
tions, such as Google® Drive, Microsoft® Cloud, Amazon®
Cloud Drive, or others. The database 126 may generally rep-
resent any device with memory capable of storing program-
matic data. In exemplary implementations in which the secu-
rity agents 134 and super security agents 136 are provided
within a single network-enabled electronics component, the
databases 126 may be provided within that same network-
enabled electronics component.

The client computing devices 128, 130, and 132 may be
implemented as a mobile smartphone (e.g., Android®,
Apple® i0S device, Windows® Phone device, Blackberry®,
etc.), tablet, a Personal Data Assistant (PDA), a PC/worksta-
tion/laptop (e.g., running Windows®, Unix®, Linux®,
Apple® operating systems, etc.), and the like. The client
computing devices 128, 130, and 132 will generally include
network connectivity, such as cellular network connectivity
and/or wireless local area networking capabilities (i.e.,
“WiFi”) or Ethernet. The client computing devices 128, 130,
and 132 will generally include a processor, a memory (e.g.,
RAM), and a hard drive. Client computing devices 128, 130,
and 132 will operate according to program logic implemented
by computer source code that is compiled into object code and
stored on a memory, from where it is read and executed by a
processor. Certain programming languages are disclosed
herein, but any suitable programming language can be used,
such as C, C++, Java, scripts, and the like.

FIG. 4 shows a division between a “client side” and a
“network side.” Communication between the client side and
the network side can take place over a communications net-
work 144. Network 144 may include any type of communi-
cation network, such as the Internet, any TCP/IP network, a
cellular communication network, including but not Global
System for Mobile Communications (GSM), Wideband Code
Division Multiplex Access (WCDMA), Code Division Mul-
tiplex Access (CDMA), or Time Division Multiplex Access
(TDMA), General Packet Radio Services (GPRS), Universal
Mobile Telephone System (UMTS), or any other type of
network suitable for computer-based communications.

According to certain illustrative embodiments, the IDACS
system utilizes one or more of three basic types of authenti-
cation, alone or in combination with other features disclosed
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herein. These forms of authentication may be used to ensure
that a User/Client combination is only allowed to access

28
The OTP,, and PID,, used in Algorithm 1 are calculated
according to Algorithm 2 and Algorithm 3.

Algorithm 1. IDACS Network Access Control procedure:

input: Cust,,, ¥ SA, $SSA, $ DB, data operation (Read/Write/Execute), data, SA,, N
output: Cust,,, $SA, $SSA, SDB

at UAg
1 OTP, = calculate_OTPs(~ Cust,, Cust,,)
2 PID,, = calculate_PIDs(-5 Cust,, Cust,)
3 Reg, = F-box(€ oncat, (Read/Write/Execute), PID(Cust,,), Content(PID,), data)
4 Ticket,, = F-box(€ oncat, OTPy,, PIDy, Req,,)
5 Cust, — SA, : Ticket,
6 XV, =TF-box("M rand) XV, = F-box(M rand)
7 forn=1toN
8 {XV,,XVy,, SA,, SSA,, passed } = run_auth_chain(SA;, XV, XV, Ticket,,)
9 if(passed =
false)
10 exit algorithm
End
End

11

SSA, — DB, : Req,,

information it is authorized to access. The first is the One-
Time Password (OTP), which provides user-SA authentica-
tion to verity the identity of the user. The second is the Access
Control List (ACL) PIDs, which are used by the SAs and
SSAs to further verify the identity of the user as well as the
user’s information access permissions (the OTPs and the
PIDs may collectively be referred to as the Client Security
Ticket). The third is the Network Security Ticket, which may
be used for SA-SSA authentication to prove that an informa-
tion access request has previously been authenticated by a
genuine SA or SSA.

The systems, components, and methodologies by which
the IDACS network 100 operates are discussed in further
detail herein.

Exemplary implementations for the Client-side operations
in accordance with the present disclosure for IDACS network
authentication and authorization are now provided with ref-
erence to the above-provided characterizations. FIG. 5
graphically depicts an exemplary IDACS Network Access
Control procedure. The exemplary IDACS Network Access
Control procedure is set forth in Algorithm 1 (shown below)
and its contained sub-algorithms. Exemplary Client-side
operations are further discussed in Algorithm 2 and Algo-
rithm 3 (also shown below). Network-side operations are
further described herein.

Note that for purposes of the present disclosure, the nota-
tion A—B: C indicates that message C is being sent from
party A to party B. Parenthetical notations are provided in the
following descriptions with reference to algorithm line num-
bers.

In Algorithm 1, UA first calculates the OTP,, (1) and PID,,
(2) needed to authenticate the data request Req,, (3) with the
IDACS network and packages them together into Ticket,, (4).
Cust,, then sends Ticket,, to a pre-determined SA, (5) to begin
the network access control process. The network access con-
trol module characterized in Algorithm 4 uses SAs and SSAs
to authenticate Ticket,, as many times as necessary (as char-
acterized by the authentication chain length, N) according to
the specific IDACS implementation (7 and 8) using randomly
generated XV, and XV, values (6) for the first iteration of the
module. If the network access control module fails at any
time, the data request is dropped (10). After the network
access control module has been run several times, the final
SSA to handle Ticket, sends Req,, to DB, for processing
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In Algorithm 2, if OTP, is being calculated by Cust,, (1),
each individual OTP, (2) is calculated by gathering the rel-
evant seeds from the relevant Clien,,, Badge,, PIN,, and Pwd,
(3), and hashing them together (4). The individual OTP,, are
concatenated together to generate the set TPW (5). If the
calculation is being performed by SA,, (7), then only OTP, is
needed to be authenticated rather than the entire set TPW
Thus, all of the relevant seeds are gathered and hashed
together to generate OTP, (8). On the other hand, the entire
set PID,, is generated by Cust,, and the entire set is authenti-
cated by each SA, or SSA,_ (excluding Content(PID, ), which
is only checked by SSA, ). In Algorithm 3, Cust,, gathers all of
the relevant seeds from Client,,, Badge,, PIN;,, and Pwd, (3)
and hashes them together (4) for each individual PID, (1).
Any SA, or SSA_ gathers the seeds and hashes them together
(6) to generate each individual PID_ (1). Finally, all PID, are
concatenated to form PID,, (7).

FIG. 6 graphically depicts the procedure for calculating a
single OTP,, at Cust,,. The depicted procedure is in accor-
dance with Algorithm 2, and it should be understood that the
procedure for calculating a single PID, at Cust,, is similar.

Algorithm 2. calculate_ OTPs( )

input: location, Cust,,
output: OTPy, or OTP,

L (location == <$ Cust,,)

2 fory=ltoq
3 Seedozp, = F-box(Is cokup-€, $ Cust,,, OTP, %)
4 OTP, = F-box(H ash, * Cust,, Seedpzp, ., OTP, )
end
5 OTPy, = F-box(€ oncat, OTP,, OTP,, . .., OTP,)
6  return OTPy
7 else if (location == $ SA,)
8 OTP, = F-box(1s ookup+H ash, PID(Cust,,), ¥ SA,, OTP, %)
9 return OTP,
End
Algorithm 3. calculate_PIDs( )
input: location, Cust,,
output: PIDy,
1 fore=1tor

2 if (location == <8 Cust,)
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-continued

Algorithm 3. calculate_PIDs( )

3 Seedpyp, . = F-box(ls ocokup*€, 5 Cust,,, PID, €)

4 PID, = F-box(H ash, <5 Cust,,, Seedp;p ., PID, €)

5 else if (location == ~$ SA, or < SSA,)

6 PID, = F-box(¥s ookup*H ash, PID(Cust,,), <§ location, PID, €)
end
End

7 PIDy = F-box(€ oncat, PID,, PID,, . .., PID,)

8 return PID,,

With the above-provided understanding of an exemplary
IDACS client-side authentication and authorization proce-
dures for gaining access to data stored on a DB in mind,
details are now provided regarding corresponding exemplary
network-side procedures that verify OTP,, and PID,, to
authenticate Cust,, and grant DB access.

Characterization 28: Given SA and SSA, each pair of two
machines from these sets share a cryptographic key. This key
is used for encryption and cryptographic hash functions. A
cryptographic key shared between machines A and B is rep-
resented as Key(A, B). These shared keys are referenced in
Algorithm 4 (shown below).

Characterization 29: Given Ticket,,, SA, and SSA, Ticket,,
is authenticated (OTP,,) and authorized (PID,,) by multiple
SA, and SSA_ (space separation and redundancy) both
before it reaches DB and before it returns to Cust,,,. As Ticket,,
is passed through this authentication chain, there is also an
authentication method for messages passed between the SA,,
and SSA, to verify the identity of the sending SA, or SSA..
Xchain Values may be used in these messages for inter-ma-
chine authentication. Details on how these values may be
calculated are included in Algorithm 4. The notation for these
values is XV, Ae[1, 6] as described in Algoritm 4.

Characterization 30: Given Ticket,, which is sent by Cust,,
to the IDACS network, the OTP, and PID,, contained in
Ticket,, is verified by an authentication chain of multiple SA.,
and SSA before it is sent to DB, (as detailed in Algorithm 1
and Characterization 29). The order in which SA, and SSA
verify Ticket,, may be pseudo-random, but calculated by the
F-box(next-SA-SSA) transform. This transform accepts
Ticket,, the current location SA,, or SSA,, and $ SA or
§ SSA as inputs and outputs index y or k for the next-hop SA
or SSA (next-hop SA. €SA, next-hop SSA, eSSA). The trans-
form applies F-box(H ash) to Ticket,, and then calculates the
Hamming distance between F-box(H ash, Ticket,,) and PID
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(SA,) or PID(SSA,) for e[ 1, q] and ke[1, n]. The index v or
K where PID(SA,) or PID(SSA,) has the lowest Hamming
Distance (excluding all SA, or SSA already in the authen-
tication chain) is the index of the next-hop SA or SSA. The
F-box(next-SA-SSA) is represented in equation notation by

%=F-box(M ext, Ticket,, ¢ . 5 s54)

PID(SA,) or PID(SSA,) are shared among all SA, or
SSA,, but in this exemplary implementation they are not
shared with Cust,,. In this exemplary implementation, the
F-box(next-SA-SSA) transform only occurs at SA or SSA
locations.

Characterization 31: Given Ticket,, and XV values, the
complete messages passed between multiple SA_, and SSA
are termed Network Security Tickets, denoted TK ,, Ae[1, 5].
Details regarding the Network Security Tickets are shown in
Algorithm 4. TK ; is a concatenation of the relevant Ticket,,
and Xchain values.

Characterization 32: Given network message B, any SA,,
or SSA,_ processing B will record a Security Ticket Log
Record \B\ detailing the vital information regarding B (e.g.,
the time B was processed, the IP address of the Cust,, that sent
B, etc.) B may be any Ticket,, or TK network messages. The
logs residing on SA,, or SSA,_ are part of $ SA, or $ SA,.

Characterization 33: Given Characterization 32, any SA or
SSA that processes a network message (e.g., TK) records a
log record \TK\ using the F-box(insert-log-record) transform.
This transform accepts $ SA, or < SSA, and TK as inputs
and outputs an updated version of $ SA_, or <§ SSA,_ which
contains \TK\. The F-box(insert-log-record) transform is rep-
resented in equation notation by

$ SA, =F-box(I nsert, § SA_, TK)

Characterization 34: Given Characterization 33, any SA,,
or SSA, may search its own log entries for a given \TK\ that
matches certain input parameters such as time, IP address of
sending Gust,,, etc. These input parameters are not rigidly
defined, and may exist in many combinations. The F-box
(retrieve-log-record) transform accepts $ SA, or $ SSA_
and a list of conditions as inputs and outputs one or more
matching log records \TK\, or ‘null’ if no matching records
are found. This transform is represented in equation notation
by

\TK\=F-box(R 1v, $ SA_, {conditions})

At beginning of Algorithm 4, values set forth below reside
at the indicated locations after the last iteration of this algo-
rithm, or are sent to (Ticket,,) or generated at (XV, and XV,,)
the indicated locations during the first iteration of the algo-
rithm.

Algorithm 4. run_auth_chain( )

imput: SA, XV, XV,, Ticket,,
output: XV,, XV;, SA,, SSA,, passed

1 XV, O SA

2 Ticket, ¢ SA

3 XV, OSSA
at SA|

4 $SA, = F-box(Lnsert, $SA,, Ticket,,)
5 if (check OTP_PID(SA,,Ticket,, Cust,,) == false) return (passed = false)

6  SA,=TF-box(Mext, Ticket,,, SA,, $SA)

$TSA

SSA, = F-box(Mext, Ticket,,, SA,

7 XV, =F-box(Hash, XV, Key(SA,, SA,))
8§  SA, — SAy TK, = { Ticket,, XV}, XV, }
9 SA, - SSA;: TK, = { Ticket,, XV, }

at SSA,

Key(SSA,, SSA))

S SSA| = F-box(I nsert, ¥ SSA |, TK,)
if (check_OTP_PID(SSA,, Ticket,, & TK,, Cust,,) == false) return (passed = false)
SA, = F-box(Mext, Ticket,, O TK,, SSA;, $SA)
& TK,, SSA,, $SSA)

13 XV, =TF-box(Hash, XV,, Key(SSA|, SA,))

SSA, = F-box(Next, Ticket,,

XVs = F-box(Hash, XV,,
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-continued

32

Algorithm 4. run_auth_chain( )

14 SSA, — SA,: TK, = { Ticket,, XV3.XV; }

15 SSA, — SSAy TK, = { Ticket,,, XV4, XVs }
at SA,

16 SA, = F-box(X nsert, ¥ SA,, TK,, TK;)

17

box(Mash, XV, O TK,, Key(SSA,, SA,))

18 report_and_trace attack() return (passed = false)

End

SSA, = F-box(Wext, Ticket,, SA,, $SSA)

XV = F-box(Hash, XV, Key(SA,, SSA,))

SA, = SSA,: TK = { Ticket,, XVs }

at SSA,

22 S SSA, =F-box(L nsert, ¥ SA,, TK,, TKs)

box(Hash, XV O TK,, Key(SA,, SSA,)

24 report_and_trace_attack() return (passed = false)
End

25  return (passed = true)

if (XV, O TK, 1= F-box(Hash, XV, ¢ TK,, Key(SA,, SA,)) or (XV; O TK, 1= F-

if (XVs O TK, t= F-box(Hash, XV, & TK,, Key(SSA,, SSA,)) or (XV4 O TKs !=F-

The exemplary network-side authentication and authoriza-
tion process described in algorithm 1 is carried out in the
function described in Algorithm 4.

The initial inputs to Algorithm 4 are handled separately
depending on if this is the first call of the function (Algorithm
1 (8) with n=1) or a subsequent call. For the first call of the
function, SA, has been randomly selected by Cust,, Ticke

has been sent from Cust,, to SA; (Algorithm 1(5) connected
to Algorithm 4(2)), and XV, and XV, have been randomly
generated by SA, and SSA,, respectively (Algorithm 1(6)
connected to Algorithm 4(1) and (7)). For subsequent func-
tion calls, SA, and SSA, in the current Algorithm 4 function
callare SA, and SSA, from the previous Algorithm 4 function
call, and Ticket,, resides at SA, as a consequence; XV, and
XV, inthe current Algorithm 4 function call are XV, and XV
from the previous Algorithm 4 function call, respectively (

Algorithm 1(8) connected to Algorithm 4(1) and (3)) (see
FIG. 7 and FIG. 8, to be discussed below, for details on how
consecutive calls to Algorithm 4 are linked).

FIG. 7 shows a graphical representation of an exemplary
network-side authentication and authorization process. The
process depicted in FIG. 6 is in accordance with Algorithm 4.
First, SA, records a security log record of Ticket,, (4). Next,
SA; verifies the associated OTP, and also PID,, extracted
from Ticket,,; if the verification fails, then the function returns
“false” (5). The next-hop SA, and SSA, are determined (6),
and XV, is calculated (7). TK, is formed and sent to SA, (8),
and TK, is formed and sent to SSA; (9). SSA, minors this
process; SSA, records a security log record of TK, (10) and
verifies PID,, extracted from Ticket,, which is extracted from
TK, (11). SSA, then calculates the next-hop SSA, and SA,
(12) and also calculates XV and XV, (13). SSA, then forms
TK; and sends it to SA, (14) and forms TK, and sends it to
SSA, (15).

WhileSA, and SSA, verify OTP, andPID,, SA, and SSA,
verify the Xchain values (however, SA, and SSA, will also be
verifying OTP, and PID,, as SA, and SSA, in the next func-
tion call of Algorithm 4). SA, first records security log
records for TK, and TK; (16). Next, the relationship between
XV, and XV, and also the relationship between XV, and XV
are verified (17). If the XV relationships fail verification, the
authentication process is stopped (18). The next-hop SSA,
(19) and XV (20) are both calculated. Finally, TK is formed
and sent to SSA, (21). SSA, verifies its received Xchain
values in a similar fashion (22-24). If all of the authentication
checks and Xchain verifications pass, the function returns
successfully (25).
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Algorithm 5. check_OTP_PID( )

input: location, Ticket,,, Cust,,
output: passed

1 if (location SA) and (OTP,,,,,,, O Ticket,, != calculate_
OTPs(~8 location, Cust,,))
2 report_and_trace_attack() return (passed = false)
End
3 if(PIDy < Ticket,, != calculate_PTDs(~$ location, Cust,,))
4 report_and_trace_attack() return (passed = false)
End
5 return (passed = true)

Algorithm 5 outlines the procedure used by SAs and SSAs
to verify the OTP,, and PID,, contained in Ticket,,. The OTP,,
associated with SA,, is verified by each SA, (1), and the entire
PID,, is verified by each SA, and SSA_ (3) (excluding Con-
tent(PID,), which is only checked by SSA,). If either of these
checks fail, the “report_and_trace_attack( )” function is
called to identify the source of error (which is assumed to be
an attacker with incomplete authentication credentials). The
details of this algorithm are discussed herein.

The following properties explain the operation and purpose
of the Xchain values.

Property 5: The procedure outlined in Algorithm 4 pro-
vides mutually-supported authentication between the SAs
and SSAs authenticating Ticket,,. FIG. 7 graphically illus-
trates the XV portion of Algoritm 4 run_auth_chain( ). During
the first iteration of run_auth_chain( ), XV, and XV, are
randomly generated; in subsequent iterations, they are given
the values of XV, and XV from the previous iteration. SA,
calculates XV, by hashing XV, with Key(SA,, SA,), and
sends both values to SA,. SA, is able to verity XV, using its
own copy of Key(SA,, SA,), which verifies the identity of
SA,.SA, also sends XV, to SSA |, which calculates XV by
hashing XV, with Key(SSA |, SA,) and sends it to SA,. SA,
is able to verify the SA -SSA, connection as well as the
identity of SSA, by verifying XV;. Similarly, SSA, calcu-
lates XV by hashing XV, with Key(SSA |, SSA,) and sends
both XV, and XV to SSA, but only XV, to SA,. SA, calcu-
lates XV ¢ by hashing XV with Key(SA,, SSA,) and sends it
to SSA,. SSA, is then able to verify the identity of SSA, by
verifying XV and is able to verify the SSA | -SA, link as well
as the identity of SA, by verifying X V.

FIG. 8 shows how an exemplary network-side authentica-
tion and authorization process (the run_auth_chain( ) algo-
rithm) may be cascaded across N SAs and SSAs to accom-
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plish a desired number of authentications. In this way, the
authentication chain provides mutually-supported space-
separated authentication that is time-evolving between the
SAs and SSAs.

Property 6: When the run_auth_chain( ) algorithm is cas-
caded, XV, and XV of one iteration are, in fact, the XV, and
XV, respectively, for the next iteration; cascaded iterations
of'the run_auth_chain( ) algorithm are seamlessly integrated
(FIG. 8). This is demonstrated at (8) in

In this way, consecutive iterations provide mutually-con-
nected authentication for each other.

FIGS. 9(a), 9(b), 9(c), and 9(d) provide additional illustra-
tions of the authentication chains in accordance with the
present disclosure. In accordance with this illustrative depic-
tion, a sensitive data access request may pass from the client
to the database, before which it may need to be authenticated
by the SAs and SSAs. The request, along with relevant OTPs
and PIDs, may be bundled into a single Client Security Ticket.
As the Client Security Ticket is passed between SAs and
SSAs, additional SA-SSA authentication may be provided to
guard against attackers impersonating or controlling SAs or
SSAs. This authentication may be based on a set of keys
where a unique set of keys can be shared between each
SA/SSA pair. These keys are used with hashes (e.g., CBC-
MAC) to provide authentication between SSAs and SAs.

FIG. 9(a) demonstrates one stage of the SA-SSA authen-
tication. In this illustration, SA , receives the database request
along with the Client Security Ticket containing all of the
client-SA OTPs and PIDs. Once SA, has authenticated the
request, it may generate an Initial Vector IV ¢, forthe SA-SSA
authentication. SA  may then performs the security operation
‘2’ where

M, ® M,' means M,'=CBC-MAC(K, M,)

Here, K is the key shared between the machine performing
the operation and the machine that verifies the operation (in
this case, SA, and SAg). In this case, the result of the opera-
tion is

e, X, o)

Here, “a.,1” correlates with the time and location param-
eters. SA,, may then passes [IVgy, Xy, 1, Client Security
Ticket] to SAy and [X;.,, ;> Client Security Ticket] to SSA,,.
SSA,, after checking the Client Security Ticket PIDs, may
perform the operation

s 101 B X @

The key shared between SSA , and SA, may be used. SSA,
may then pass [X,, », Client Security Ticket] onto SAy. SAg
may now able to verify the correctness of the values of X, ,
and X, » based on the previous calculations. Verifying the
relationship (IV,8 X, ;) can authenticate SA,, while
verifying the relationship (X, , 8 X, ») can authenticate
SA, and SSA , together.

As the database access request passes through the SA-SSA
layer, each three-machine combination in the process may
performs an authentication process like the one described
above. FIG. 9(b) shows an example of relationships among
three-machine combinations for performing authentications.
In this illustrative embodiment, the relationships are inter-
locking, and the final leg of the authentication “anchored” by
SA,, (the value X, » sent from SSA , to SA,) can be con-
tained in the same packet as the first leg of the authentication
“anchored” by SSA , (the value X, , sent from SSA_ to
SAp). In addition to the pictured authentication mechanisms,
each packet exchanged between any two machines may be
accompanied by a hash message authentication code
(HMAC) that hashes together the authentication items in that
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packet along with the Client Security Ticket. The IDACS
architecture in certain illustrative implementations may con-
tain only one SSA, while others may contain multiple SSAs.
Either approach is within the scope of the present disclosure.

FIG. 9(c) shows a representation of different authentica-
tion relationships by two independent security hash chains
corresponding to the authentication chain depicted in FIG.
9(b). The depicted X parameters may be referred to collec-
tively as “XChain values.”

If an attacker controls a single SA or SSA, this condition
can be detected by the IDACS network. For example, if SA
is controlled by an attacker and clears an unauthorized Client
Security Ticket (unauthorized due to OTP or ACL PID vio-
lations) and provides a correct X, , value, SSA  may not
authorize the Client Security Ticket (based on OTP/PID) and
may not generate the correct X, , value. Thus, SA;, can
quickly detect that the Client Security Ticket was not cor-
rectly authorized by SA_, and SSA, in combination. If an
attacker can control both SA_, and SSA ,, then SAg may be
fooled to believe the Client Security Ticket was approved.
Alternatively, the SAs and SSAs may be fooled if the Client
Security Ticket could be successfully forged. However, forg-
ing a Client Security Ticket without access to the user’s
security token (e.g., password, smart card, client machine,
etc.) is an NP-complete problem. This cross-connected
authorization checking provides a means to detect the com-
promise of the user’s security tokens and can therefore pro-
vide an effective defense against zero-day malware attacks.

In illustrative embodiments, the process of choosing SA ,
SAg, SSA,, etc. may be pseudo-random, but predictable. At
the beginning of the authentication chain, the client randomly
chooses SA  and may send it the Client Security Ticket. SA
may then perform an operation to determine the path of the
Client Security Ticket. SA , may hash the Client Security
Ticket and then compare the result to the PIDs of all other SAs
that they use to identify themselves to each other. FIG. 9(d)
shows that each comparison may generate a Hamming Dis-
tance, and the SA with the lowest Hamming Distance
becomes SAg, the SA with the second-lowest Hamming Dis-
tance becomes SA,, etc. Similarly, SA, may compare the
Client Security Ticket hash to the PIDs used by the SSAs. The
SSA with the lowest Hamming Distance may become SSA_,
the SSA with the second-lowest Hamming Distance may
become SSA,, etc. In this way, the Client Security Ticket path
may be determined at the beginning of the authentication
chain. Any SA or SSA in the chain can independently verify
the expected Client Security Ticket path. If this path is altered
by an attacker, this deviation can be detected and the attack
prevented. The length of the authentication chain can be
configured based on the current security requirements of the
system. Knowledge of the expected and actual paths can also
be used for the attack tracebacks.

FIG. 10(a) shows a directed graph representing a seed
reassembly program, used to visualize a proof showing prop-
erties of the exemplary IDACS network security procedures.
FIG. 10(5) shows a solution to a Maximum Weight Directed
Path of Specified Length problem, also used to visualize a
proof showing properties of the exemplary IDACS network
security procedures. FIG. 11(a) shows a graph representing a
memory reassembly problem, used to visualize a proof show-
ing properties of the exemplary IDACS network security
procedures. FIG. 11(5) shows a solution to a Maximum
Weight Path of Specified Length problem, also used to visu-
alize a proof showing properties of the exemplary IDACS
network security procedures. These figures will be referenced
in connection with the discussion below.
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Consider the following scenario: an attacker wishes to
replicate the IDACS Network Access Control procedure for a
legitimate Cust,, to impersonate Cust,, and gain access to
Cust,,’s data residing on DB,. To impersonate Cust,,, the
attacker requires correctly generated OTP,, and PID, for
Cust,,. To accomplish this, the attacker requires two things: a)
the cryptographic seeds residing on/derived from Client,
Badge,, PIN,, and Pwd, (ie. Seed, ¢ Client,
Seed,, & Badge,, Seed, ¢ Pwd,, and Seed,, ¢ PIN,) and b)
the order in which these seeds must be hashed to generate all
OTP,, and PID, (i.e., the output of the F-box(1s ookup) trans-
form 1n Algorithm 2(3) and Algorithm 3(3)). An attacker who
is able to steal or clone a Client,,, Badge, Pwd,, or PIN, can
gain access to (a) through memory scraping or other memory
access strategies. However, to obtain (b), the attacker needs
access to < Cust,,, which is the critical input to the F-box(
Yo ookup) transform. Now, § Cust,, is composed of $ Cli-
ent,, <5 Badge;, <5 Pwdg, and § PIN;; the entire $ Cust,,
does not reside with any one of these locations or states.
Therefore, an attacker who does not possess all four of these
items cannot recreate $ Cust,, apart from a brute-force
attack; such an attacker must resort to other means to recreate
(b) (i.e. the output of the F-box (= ookup) transform).

The attacker faces an order-reassembly problem; this prob-
lem can be represented using graph theory. The group of seeds
Seed,, is represented as a set of vertices V' and a set of
directed edges E, where each veV is connected to every
other veV by a pair of directed edges eeE with opposite
directions. Each eeE is given an associated weight W(e),
0=W(e)=<1 (FIG.10(a)). Each e€E with a tail connecting to v,
and a head connecting to v, (v,, v,eéV ), represents the pos-
sibility that v, follows v, in the output of the F-box(¥= ookup)
transform, while W(e) represents the associated probability
(the determination of W(e) is discussed herein). Presumably,
the path connecting N vertices (where N is known to be the
number of seeds output by the F-box(¥= ookup) transform)
that has the highest sum W(e) of any path with N vertices will
be the correct solution to the F-box(Ys ookup) transform
(FIG. 10(5)). The problem of finding the highest sum W(e)
path is defined as the Maximum Weight Directed Path of
Specified Length (MWDPSL) problem; this problem is
proven NP-complete herein. The NP-complete proof of the
(MWDPSL) problem in turn proves Theorem 1.

Consider a second scenario. The same attacker does not
have access to Client,,, Badge,, Pwd,, or PIN,, (and therefore
not <8 Cust,, either). This attacker must recreate $ Client,,
<5 Badge,, < Pwd,, and <§ PIN,; to gain access to both (a) and
(b); therefore, the attacker must correctly reassemble the
memory contents of Client, and Badge. and an analogous
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representation of Pwdg, or PIN, (these memory contents are
the characterization of $ Client,, < Badge,, < Pwd,, and
$ PIN,). Each of these items is represented by b memory
locations, each of which is Z bits long; therefore, each
memory location contains one of 2% possible values. This
situation can be represented using an undirected “colored”
graph. The possible values for a given memory location can
berepresented by a group of 2% vertices v of the same “color”,
veV , and each memory location can be represented by a
different “color” group (represented as different shapes in
FIG.11).EachveV isconnectedto every otherve V' (except
forv ofthe same “color”) by anundirected edge eeE, and each
eel has an associated weight W(e), 0=W(e)=1. Each edge
represents the possibility that the two connected v are both
present in the correct reconstruction of the memory contents,
and the associated W(e) represents the probability (again, the
manner in which W(e) is assigned is discussed herein). A path
connecting one v of each “color” that has the highest sum
W(e) will represent the correct reconstruction of the memory
contents (FIG. 11). This problem is defined as the Maximum
Weight Path of Specified Length (MWPSL) problem; this
problem is also proved NP-complete herein. In turn, the proof
of the MWPSL problem proves Theorem 2.

While the discussion above was set forth in terms of an
attacker that must recreate $ Client,, < Badge,, < Pwdj,
and $ PIN,, it should be understood that a similar result
would apply with respect to an attacker that must recreate the
Access Control List, discussed above, which may include
similar information. Particularly, as mentioned, each SA and
SSA may possess a copy of the ACL, which may contain
multiple records that specify who is allowed to access which
data (which may be specified by the Content PID). When a
user seeks to access a piece of data, the request may be
checked by every SA or SSA in the process against the ACL.
to authorize the request.

In illustrative embodiments, reconstructing an ACL record
is an NP-complete problem. This can be understood by con-
sidering an IDACS system that uses the above-described ACL.
format. This ACL format uses p different types of ACL record
items (e.g. User PID, Client PID, Content PID, etc.). These
different types of ACL record items may be referred to as
“flavors”, symbolized by F, such that there are p different
“flavors” in this system. Each of these p “flavors” may be x
bits long; therefore, each item can exist as one of 2% possible
values, or “states”, symbolized by S(F). The challenge to the
attacker, in forging a single ACL record, is to find the correct
S(F) for each of the F in the ACL record.

To frame this problem in terms of graph theory, one can
consider vertices and edges as follows:

TABLE 3

Vertex
™)
Edge
(E)

A vertex in the graph represents one of all possible states for a given flavor. Each
vertex is specified as a given flavor. There are 2* vertices for each flavor.

An edge connects two V , or endpoints. It may be alternatively represented as the

pair of V' that it connects, (V ;, V ,). In this graph, there are no loops (edges with the

same V' as both endpoints). The edge represents a possibility that the two endpoint
S(F) both exist in the actual ACL record.

“Flavors™ and “states” may be described as:

Flavor (F)

agraph G=(V,E) ap-coloringof Gisamap F: ¥V — {1,2,...

The flavor of a node is equivalent to the idea of “graph coloring”. Given

,p} and

given vertices u and v, (u, v) € E implies that F(u) = F(v). In other

words, every V' is assigned an F such that adjacent V cannot be assigned

the same F.
State (S(F))

a flavor F.

An S(F)isaV representing a possible value for the ACL record item with
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TABLE 3-continued
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Edge Weight Each E has an associated weight W, 0 = W = 1. This weight represents

(W) the probability that the two endpoint S(F) both exist in the actual ACL
record. The method for determining this probability is discussed herein.

Path (P) An alternating sequence of V and E , beginning and ending with a V',

where each V' is connected to both the previous and following E in the

sequence. No E or V' are repeated.
Specified Length

A P containing a specified number of V . In this particular problem, the

Path (SLP) specified number of V' is always p; each specified length path contains
one Y of each F, and no specified length path contains multiple V' of the
same F. A specified length path represents a legitimate value for an ACL
record; all SLPs are candidates for the actual ACL record in question.

Maximum This is the SLP of length p where the sum of all of the W in the SLP are

Weight Path greater than or equal to all other possible SLP in the graph problem.

(MWP)

The challenge to the attacker would be to solve this graph
problem. It should be noted that due to the time-changing
nature of the ACL, the attacker may be faced with a new ACL
record graph problem each time the ACL record changes.

Given a pile of data fragments (analogous to the S(F) in the
ACL record problem), a PPM model can be used to automate
the reassembly of the fragmented file(s). Given fragments A
and B, the PPM model can analyze both fragments and gen-
erate a probability that fragments A and B are adjacent in the
original file.

FIG. 12 shows that file fragments and probabilities can be
used to form a complete undirected graph, where the file
fragments are represented by vertices in the graph and the
probabilities between any two fragments are represented by a
weighted graph edge. At this point, the graph can be used to
generate possible fragment orderings of the original file(s). If
it is known that the pile of file fragments represents a single
file, then in theory the Hamiltonian path (a path that touches
each vertex exactly once) with the highest total edge weight
would represent the most likely file fragment ordering.
Assuming that a human forensics analyst could recognize
correct matches between fragments, the graph solution could
provide large pieces of the solution to the file reconstruction
problem.

It is now possible to show that the ACL record graph
problem derives from the file reassembly PPM problem. The
states (S(F)) in the ACL record problem are analogous to the
data fragments in the PPM problem. The edges (E) and edge
weights (W) in both problems represent probabilities of rela-
tionships between the vertices (V' ). In the PPM problem, the
goal is to isolate the Maximum Weight Hamiltonian Path (a
path that covers all of the vertices), whereas the goal of the
ACL record problem is to isolate a Maximum Weight Path of
Specified Length (covering only p vertices). Both graphs
would be solved in a similar manner.

Given that an attacker can use this graph method to attack
the ACL record, the question of interest becomes, how effi-
cient is PPM/ACL record graph reassembly, and what are the
implications for IDACS security? To answer this question,
one can examine the complexity of the reassembly algorithm.
For purposes of this analysis, it is assumed the time needed to
generate the W is constant for each pair of V ; thus, the
running time to construct the complete graph is equal to the
number of E in the graph. In the ACL record reassembly
problem, the total number of E is 2>V (p?—p); therefore the
complexity of assembling the graph is O((p*2%)?). The main
question, however, is how long does it take to determine the
Maximum Weight Path oflength p (which should provide the
solution to the ACL record item matching problem)? This
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problem can be represented by the Maximum Weight Path of
Specified Length problem. This problem is intractable, or
NP-complete.

Thus, in the ACL record reconstruction problem, if F,=F,,
then there is no E connecting S(F ) and S(F,). Assuming that
the “correct” solution to the ACL record reconstruction prob-
lem is an MWP, then the ACL record reconstruction problem
is equivalent to the Maximum Weight Path of Specified
Length problem. Therefore, the ACL record reconstruction
problem is NP-complete.

Since this problem has been proven NP-complete, it may
be regarded as providing a high level of security provided that
x is sufficiently large. Table 4 demonstrates that x in a realistic
IDACS system is sufficiently large as to make the problem
solution run-time prohibitively large. Additional security is
provided if the ACL record graph W are sufficiently uniform.

TABLE 4

Time to reconstruct a single ACL record at 10¢
oracle queries per second

Number of ACL items (p)

7 8 9 10
Bit 128 1.7%10%%yrs.  5.7% 1024 yrs. 1.9% 6.6*
Length 1033357 1037Lrs.
of ACL 256 8.8%10°°yrs. 1.0* 1093 yrs, 1.2% 1.4*
Ttems 10680 yrs. 10757yrs.
x) 512 2.5% 1019 yrs, 3.3% 10121907 44% 6.0%
101373yrs. (1527 rs.

The NP-completeness set forth above with respect to ACL
recreation and similarly set forth above in Theorem 1 and
Theorem 2 with reference to < Cust,, or any other super-state
points to a high level of security for IDACS, since NP-com-
pleteness is associated with an exponential increase in the
problem solution complexity. However, NP-completeness
speaks only to the worst-case (for the attacker) situation. It
may be that the problem solution can be found with signifi-
cantly less than exponential complexity. As mentioned, FIG.
10 shows a directed graph representing the seed reassembly
problem, and the difficulty in finding the MWDPSL lies in the
fact that the maximum weight path is not immediately appar-
ent. If the graph in FIG. 10 contained a few very high-weight
edges and the remaining edges had lower weights, this would
provide a significant portion of the solution and greatly
reduce the problem complexity.

FIG. 13 shows a graph problem having uniform distribu-
tion of edge weights. FIG. 14 shows a graph problem with
relatively few high-weight edges. Generally, it is understood
that data fragments (e.g., file fragments or Seed) that are more
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“random” will have a low correlation with each other; when
analyzed for likelihood of matching, they will result in a
uniform distribution of edge weights as depicted in FIG. 13.
A strong Random Number Generator would be expected to
generate this type of result. However, if the data fragments are
highly patterned (e.g., the outputs of a poorly-designed hash
function), the analysis will result in a graph with a few high-
weight edges, as depicted in FIG. 14. The question arises
which of these two situations most closely matches the analy-
sis of the IDACS Seed.

The National Institute of Standards and Technology
(NIST) has provided a battery of tests that analyze the outputs
of Random Number Generators (RNGs) to measure their
“randomness” by looking for patterns. This battery of tests
has also been used on ciphertext from various encryption
algorithms to measure how closely it matches truly random
data. This battery contains 15 individual tests, each of which
measures different aspects of “randomness” in a set of data.
Each test, when analyzing a data sample, asks this general
question: “If the algorithm that generated this data sample
was truly random, what is the probability that this specific
data sample could have been generated?”” The test responds
with a p-score for the analyzed data sample; this p-score is a
probability in the range [0, 1]. NIST recommends interpreting
these p-scores using a “significance level” of 0.01; if a data
sample’s p-score is above 0.01, then the data sample has
passed the randomness test. Some data samples that are truly
random will generate a failing p-score, which would be a
“false negative” for randomness; this is due to inherent weak-
nesses in the tests. There are two ways to interpret the results
of these tests. The first way is to look at the proportion, or
percentage, of data samples with passing p-scores. According
to the parameters in A. R. et al., “A4 Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryp-
tographic Applications,” Gaithersburg, Md., 2010, the con-
tents of which are incorporated herein by reference, for a set
of'tests run with 1000 data samples, a truly random RNG will
have a minimal proportion of 0.9805068, i.e., a minimum
98.05% pass rate. The second way is to look at the distribution
of the test p-scores. For a set of truly random data samples
being subjected to a test, it is expected that the p-scores of the
data samples should be evenly distributed. Evenness of dis-
tribution can be measured by calculating P-value, based on
the chi-square statistic for each test as discussed in A. R. etal.
if each test has P-value;=0.0001, then the p-scores are con-
sidered to be evenly distributed.

To determine the “randomness” of Seed used in IDACS,
the NIST battery of tests was applied to a number of SHA-256
cryptographic hash outputs designed to simulate the Seed
used by IDACS. The battery of tests was applied to 1000 data
samples of sizes dictated by the NIST battery.

Ofthe 15 tests in the battery, two of the tests were run twice
during the course of the battery. Results for both tests are
reported here. Three of the tests were run a number of times;
results for two randomly chosen instances of those tests are
reported here. All other tests were run once, and the results are
reported here. There are a total of 20 separate test results. F1G.
15 shows an analysis of the exemplary IDACS network based
on a battery of tests, and shows the proportions of data
samples that pass each test in graph form. It can be seen that
all tests exceed the minimum pass proportion of 0.9805068.

For the second analysis, the P-value, for each of the tests is
presented in Table 5. It can be seen that all tests exceed the
minimum pass value of 0.0001.
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TABLE 5

P-value s for each test

Test
# P-value,
1 0.461612
2 0.328297
3 0.134944
4 0.788728
5 0.918317
6 0.605916
7 0.018668
8 0.378705
9 0.572847
10 0.873987
11 0.581082
12 0.444691
13 0.455937
14 0.052531
15 0.907498
16 0.345744
17 0.915241
18 0.078567
19 0.278461
20 0.614226

It can similarly be shown that the Network Security Ticket
approval chain, discussed above with respect to Xchain val-
ues and other features, is secure. As mentioned, the Network
Security Ticket may make use of XChain values, which may
be generated using the CBC-MAC encryption, and the
HMAC. Thus, this discussion of the security of the Network
Security Ticket addresses these items. The Network Security
Ticket approval chain system is secure because it is more
difficult to break than the underlying CBC encryption mode
used for the XChain values, and the HMAC, which are gen-
erally known to be secure. Moreover, the network security
system as a whole is at least as strong as the security provided
by the Network Security Ticket approval chain. Thus, the
entire network is secure as well.

Implications of the disclosed embodiments may be better
understood based on the following disclosure. Consider the
attacker in the scenarios; an attacker who has access to cryp-
tographic seeds but not <$ Cust,, (Theorem 1) OR no access to
any memory locations at all (Theorem 2) faces the NP-com-
plete reassembly problem. There is no known solution to
these problems with a complexity polynomial to the problem
size (number of seeds or memory locations in the graph). A
polynomial-time solution could exist for certain situations
meeting special constraints; however, due to the demon-
strated randomness of the Seed used in IDACS, it is expected
that the best algorithm will be of exponential complexity to
the problem size. Having no special algorithms to aid him,
and the attacker will be reduced to brute-force attacks. FIG.
10 (b) shows a Theorem 1 situation, in which he must try
every possible seed combination solution to F-box (¥ ookup)
to guess the solution. FIG. 11 (b) shows a Theorem 2 situa-
tion, in which he must try every possible memory value to
guess the solution as shown in. Such attacks will be detected
quickly, and the security log/forensics capabilities of IDACS
will allow the system to identify which seeds, locations, and
states have been compromised by the attacker. The attacker
will be foiled even if the some (but not all) of {Client,,
Badge, PIN,, Pwd,} are stolen. Furthermore, even if the
attacker is able to guess the solution, because of Property 3,
the identity, memory locations, and order of the crypto-
graphic seeds evolve in time, presenting the attacker with
totally new problems as shown in FIG. 10 (a) and FIG. 11 (a).
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By way of illustration, consider a Theorem 1 situation
where the attacker has access to all of the Seed needed to
calculate OTP,, and PID,, (but without access to the F-box(
1> ookup) transform). For an IDACS system with a given q
(number of SA, , with the same number of OTP, to be calcu-
lated) and a given r (number of PID, to be calculated) and a
given number of Seed,, used to calculate each OTP,, and PID,,
Table 6 shows how long it would take the attacker (on aver-
age), trying all possible permutations of Seed,, at 10° permu-
tations per second, to find the ordering to correctly calculate
OTP,, and PID,,.

TABLE 6

# Seed_ per OTP/PID

5

10

15
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The start times for these attacks were uniformly distributed
over a 20 millisecond period. These attack packets would be
checked for OTP,, and PID,, by the SAs and the SSAs accord-
ing to normal IDACS operations. If the packet failed any of
these checks, the packet would be dropped as an attack. If an
attack packet was able to bypass all of the security checks and
successfully carry out a Database Read or Write operation,
the attack was considered successful. Background traffic was
present in the network during both of these phases.

In the simulation, if the attack packet did not possess the
proper OTP,, and PID,,, any SA or SSA would detect the
attack 100% of the time. In reality, however, some attacks
may go undetected due to various attack methods (zero-day
attacks, SQL injection, buffer overflow, etc.) Therefore, for
purposes of the present simulation, SAs and SSAs were clas-
sified as “fully compromised” and “partially compromised”.
A “fully compromised” SA or SSA would pass a failed OTP,,

8 12 16
# OTPs 6+8 3.13 % 4.01 * 8.87 *
(SAs) + 101" years 10%°* years 10422 years
#of PIDs 8+8 6.11°% 5.63 % 1.36 % 20
10%% years 1038 years 10%? years
10 + 8.80 * 1.59 % 1.14 %
8 10?4 years 104% years 10°77 years

FIG. 16 shows a simulation network to demonstrate the
exemplary IDACS network’s capabilities. Simulations for
this research were carried out using a model of an IDACS
network built using MATLAB. The network contains a vari-
able number of Clients up to a maximum of 102,400. The SA
barrier consisted of four SAs (with the possibility for future
expansion). The network contained one or two SSAs and one
Database (both with the possibility for future expansion).
Network links were built according to the bandwidths indi-
cated in FIG. 16, and were full-duplex.

During all simulations, background traffic was introduced
into the network to simulate normal operating conditions. It
was determined that introducing network traffic on the slower
network connections did not affect the simulation results (but
made the simulation running time prohibitively long). There-
fore, all background traffic was introduced between the SAs
and the SSAs. Uniformly distributed background traffic equal
to 80 Kbps/Client was divided equally between the SAs and
sent from each SA to each SSA. An equal amount of traffic
was also sent from each SSA to each SA. This rate of back-
ground traffic ranged from a one-way 80% load on a 10 Gbps
link for a full-sized network (102,400 Clients) to a much
smaller load for smaller networks (0.8% load for 1000 Cli-
ents). This rate of background traffic affected both SA/SSA
security log size (which has a substantial effect on real-time
forensics, which is discussed herein and packet transit time in
the datacenter (due to network congestion). Additionally,
realistic packet delay times for routers were obtained from
router manufacturer documentation and incorporated into the
simulation. Packet processing delays for Clients, SAs, SSAs,
and Databases were estimated; when the IDACS prototype
implementation is completed by the researchers, more pre-
cise packet processing times will be measured and incorpo-
rated into the simulation.

Each simulation consisted of two phases. In the first phase,
each Attacker would build a set of compromised Slaves (a
botnet) gathered from a pool of vulnerable Clients. The
attacker would compromise the Clients (turning them into
bots) by sending a Compromise packet to each Slave candi-
date. During the second phase, each Attacker would send out
a specified number of Read and Write attacks using a random-
length Attack Chain of chained Slaves (the details of the
attack scenarios used in this simulation are discussed herein).
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or PID,, check as successful 100% of the time; this situation
represents an SA or SSA that is fully controlled by an attacker.
A “partially compromised” SA or SSA would pass a failed
OTP,, or PID,, check 50% of the time; this represents a “nor-
mal”, or uncontrolled by an attacker, SA or SSA. The ratio-
nale behind setting a “partially compromised” SA or SSA to
a 50% fail rate is twofold. First it simulates zero-day attacks,
etc.; second, it demonstrates the strength of the IDACS sys-
tem, even under “poor” conditions and makes more visible
the effect of other variables on network performance. Gener-
ally, it is expected that the failure rate of “normal” machines
may be less than 50%.

Additional probability variables were also used to govern
other factors in the simulation. During chained attacks (in
which an Attacker uses a chain of Slaves (bots) to launch an
attack; this is discussed herein below), the attacker was given
an 80% probability of stealing the cryptographic seeds
needed to calculate OTP,, and PID,, and an 80% chance of an
attack chain packet (priorto the final leg of the chained attack)
passing a failed permissions check based on Content(PID,).

During the simulations, one of the statistics that were
tracked was the traceback time. Each time an attack was
detected, the simulation time was recorded as T1 for that
attack. When the SSA completed the traceback to identify the
attacker, that time was recorded as T2. When the SSA com-
pleted the log search and correlation to identify all slaves of
that attacker, that time was recorded as T3. These three times
were used to compile statistics about the traceback speed of
the IDACS system (which are shown in the following graphs).
The two times of interest are the traceback time (T2-T1) and
the All Slaves Identified time (T3-T1). These times demon-
strate the real-time capability for forensics reporting in
IDACS. It should be noted that for any given attack, (T2-T1)
will always be shorter than (T3-T1), since (T3-T1)=
(T2 -T1)+(T3-T2). Tracebacks in this simulation were based
solely on the log correlation method; other traceback methods
such as PID examination can be examined in the following
paper.

All tests were based on 1000 attacks for a given test case;
500 Read attacks and 500 Write attacks. Some tests used 1
SSA, and some used 2 SSAs. The first set of tests (FIG. 17)
demonstrates the performance of the IDACS system under
casualties (“fully compromised” SAs). It shows that even
with multiple SAs compromised, the attack detect ratio is still
very high. One SSA was used in these tests.

FIG. 17 shows simulation results for the exemplary IDACS
network, and shows that the Attack Detection Ratio is fairly
constant across network sizes. However, the Attack Detection
Ratio is affected by the number of “fully compromised” SAs.
When no SAs are “fully compromised”, the system performs
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very well, with an average detection ratio above 99.5%. With
one or two SAs “fully compromised”, the detection ratio is
still fairly high. Thus, it can be seen that the system provides
an excellent defense against attacks, even under heavy casu-
alties.

FIG. 18 shows a set of tests for the exemplary IDACS
network performed to test the system under an SSA “full
compromise” mode. The simulated network in these tests
contained two SSAs; one was “fully compromised” and the
other was “partially compromised”. By comparing FIG. 17
and FI1G. 18, it can be seen that the compromise of an SSA has
greater effect on the Attack Detection Ratio than the compro-
mise of an SA. This is because the simulation specified the
chances of an attacker obtaining OTP,, and PID,;, for a Slave
were fairly high (80% chance), thus making permissions
checks based on the Content(PID,) (which were only per-
formed at SSAs) the primary mode of detecting attacks. Thus,
the loss of an SSA has a greater effect on system security.
However, even with an SSA and up to 2 SAs “fully compro-
mised”, the Attack Detect Ratio was still above 94%. This test
shows that protecting the SSAs may be made a priority in
system implementation.

FIG. 19 demonstrates the performance of the IDACS sys-
tem under casualties. It shows that even with multiple SAs
compromised, the attack detect ratio is still very high. 1 SSA
was used in these tests.

As expected, FIG. 19 shows that the Attack Detection Ratio
is fairly constant across network sizes. However, the Attack
Detection Ratio is affected by the number SAs compromised.
When no SAs are compromised, the system performs very
well, with an average detection ratio above 99.5%. With one
or two SAs compromised, the detection ratio is still fairly
high. Thus, it can be seen that the system provides an excel-
lent defense against attacks, even with a heavily compro-
mised system.

FIG. 20 shows the results of tests performed to test the
system under SSA compromise. The simulated network in
these tests contained two SSAs, one of which was compro-
mised. By comparing these figures, it can be seen that the
compromise of an SSA has greater effect on the Attack Detec-
tion Ratio than the compromise of an SA. This is because the
simulation specified the chances of an attacker obtaining
authentication credentials for a Slave (e.g., Badge and Pass-
word) were fairly high (80% chance), thus making authori-
zation (permissions) checks the primary mode of detecting
attacks. Since the SSAs perform half of the permissions
checks, the loss of an SSA has a greater effect on system
security. However, even with an SSA and up to 2 SAs com-
promised, the Attack Detect Ratio was still above 94%. This
test shows that protecting the SSAs should be a top priority in
any implementation of this system.

An advantage of the IDACS system is its ability to identify
the attacker and all of the attacker’s slaves quickly. FIG. 21
shows the average attack traceback time for an IDACS system
with 1 SSA and no SAs or SSAs compromised.

FIG. 21 shows that the attack traceback times are very
short, with even the (T3-T1) traceback time under 3.5 milli-
seconds. Even as the network size grows, the traceback time
grows very slowly relative to the network size. This is because
the simulation uses log,( ) to calculate log search time, since
there are currently log search methods that are better than
log,( ). Because the attack traceback is so fast, the IDACS
system can begin defensive or counterattack procedures
before the attacker even realizes that the attack has been
detected and blocked.

Another benefit of the IDACS system is that traceback can
be improved by adding additional machines to the SA/SSA
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barrier. FIG. 22 and FIG. 23 show the average traceback times
for different networks, one with one SSA, and one with two
SSAs.

FIGS. 22 and 23 show that the introduction of a second
SSA into the system can dramatically reduce the attack tra-
ceback time. This is because the presence of multiple SSAs
spreads the traceback workload between different machines,
increasing total system performance. This performance
upgrade is a significant incentive for expanding the system
during future development.

One of the main features of IDACS is the real-time foren-
sics capability. Through log examination and correlation,
IDACS is able to trace back and correctly identify the origin
of an attack, whether the attack is launched directly by the
attacker or indirectly using a botnet of legitimate IDACS
users.

In today’s network security environment, it is important to
detect and prevent network intrusions. It is also important to
trace network attacks to their origins and identify the culprits
and their methods. This allows the guilty parties to be held
liable for their actions; it also allows network administrators
to focus their resources once they know the weak spots in their
defenses.

Thus, disclosed embodiments provide real-time digital
forensics capabilities that can identify network attackers as
well as their collaborators, and even traitors within IDACS
itself. Explanation is now provided regarding those capabili-
ties possessed by IDACS and how they can be used to detect,
block, and trace attacks to their origins. Additionally, simu-
lations demonstrate the ability of IDACS to detect attacks and
self-heal even when the network contains a high percentage
of insider traitors.

When an attacker wishes to defeat the IDACS Network
Access Control Protocol to gain access to protected data or
services residing within the IDACS datacenter, there are sev-
eral general attack vectors available. Three exemplary attack
vectors (which may be used alone or in combination) include:

Attack vector 1: Forge legitimate Cust,, credentials (Cli-

ent,, Badge., Pwd,, and PIN,) to impersonate a legitimate
Cust,,

Attack vector 2: Steal/hack credentials for a legitimate
Cust,,

Attack vector 3: Hack and gain control over one or more
SAs and/or SSAs to manipulate the authentication process

Attack vector 1) requires brute-force guessing of $ Cli-
ent,, <5 Badge,, <5 Pwd,, and -5 PIN, ; this is generally infea-
sible according to Theorem 2. Attack vector 2) may be more
effective, although the space-separation of Client,,, Badge.,
Pwdg, and PIN, makes it more difficult for an attacker to
collect them all and acquire a botnet of complete Cust,,. By
using attack vector 3), an attacker can use a botnet of SAs and
SSAs to bypass OTP,, and PID,, checks and even manipulate
the correct authentication chain path. Attack vector 3) can be
accomplished by hacking loyal SAs and SSAs, turning them
into traitor machines; these traitor machines possess all of the
Seed,, used by that particular IDACS machine. Additionally,
it may be possible to use a hostile machine to impersonate, or
spoof legitimate SAs and SSAs, although a spoofed machine
would not possess the Seed, associated with the legitimate
machine. The most effective attack scenario combines vec-
tors 2) and 3) in an attempt to access the IDACS datacenter.

FIG. 24 depicts an attempt to attack the IDACS data center
through a direct attack. If an attacker is able to use attack
vector 1) possibly combined with 3) to control a single Cust,,
he will most likely attempt to access the IDACS datacenter
directly.
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FIG. 25 depicts an attempt to attack the IDACS data center
through a botnet attack. If the attacker uses 2) to build a botnet
of traitor Cust,, he may choose to send Ticket,, through
multiple traitor Cust,,. In this way, the attacker is able to
accomplish several objectives. First, the attacker takes advan-
tage of the credentials owned by the traitor Cust,, to send a
legitimate Ticket,. Second, in the case that the attack is
detected, he masks his identity from the IDACS forensics
suite. An attacker may build a botnet through any number of
methods, such as Trojans contained on poisoned websites or
in email attachments. In such an attack scenario, an attacker
making use of a botnet to launch an attack may use one
compromised machine or several machines “chained”
together to launch the attack. However, even in such situa-
tions, once an attack is detected, the IDACS real-time foren-
sics will be able to identity the attacker through the methods
described herein.

By means of attack vectors 2) and 3), any Cust,, SA_, or
SSA, can be turned into a traitor machine. When this hap-
pens, the machine becomes a Byzantine actor (i.e. a malicious
system actor that actively works to defeat the correct opera-
tion of the system). As known in the art, it is of interest to be
able to prove that a given system is Byzantine-resistant, able
to operate correctly in the presence of a given number of
Byzantine actors.

The incorporation of the space-separated time-evolving
relationship into the IDACS Network is based on a principle
which affects its real-time forensics capabilities.

Principle 1: Any Cust,,, SA,, or SSA, in IDACS can be
hacked and turned into a traitor/Byzantine actor. Any Cus-
tomer (Cust,,), authenticating machine (SA, or SSA,), or
real-time forensics machine (SSA,) can be turned into a
traitor/Byzantine actor.

This principle is a reason for the decentralized approach of
separating authentication capabilities in space and time. With
a design that keeps this principle in mind, IDACS is able to
detect and prevent almost all illegal Ticket that are passed to
it. In fact, IDACS is demonstrably secure against any illegal
Ticket under certain conditions. The following illustrative
capabilities of this exemplary implementation generally hold
under certain assumptions outlined below.

Assumption 1: For purposes of the present illustrative dis-
cussion, assume that any Custy\ can only communicate with
SA.

Assumption 2: For purposes of the present illustrative dis-
cussion, assume that any member of SA can communicate
with any Cust,,, any member of SSA, and any other member
of SA.

Assumption 3: For purposes of the present illustrative dis-
cussion, assume that any member of SSA can communicate
with any member of SA or DB, and any other member of SSA.

Assumption 4: For purposes of the present illustrative dis-
cussion, assume that any member of DB can communicate
with any member of SSA.

Assumption 5: For purposes of the present illustrative dis-
cussion, assume that an attacker who is forming Ticket,, has
access to all Seed,, stored on traitor SA, or SSA..

Assumption 6: For purposes of the present illustrative dis-
cussion, assume that a spoofed SA, or SSA, does not have
access to the Seed, stored on the machine it is spoofing.

Assumption 7: For purposes of the present illustrative dis-
cussion, assume that any DB, that receives a Ticket,, can
verify whether or not the SSA _ that sent it was the correct
SSA, at the end of the calculated authentication chain.

Assumption 8: For purposes of the present illustrative dis-
cussion, assume that when processing Ticket,,, IDACS per-
forms OTP,, or PID,, checks on both the approach from Cust,,
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to DB, and on the return from DB to Cust,,. However, the
authentication chain path for the return is based on the reply
message Ticket',,, which is different from Ticket,,.

Assumption 9: For purposes of the present illustrative dis-
cussion, assume that any attack Ticket,, falls into one of two
categories: a) contains incorrect OTP,, or PID,, or b) contains
correct OTP,, and PID,,, but is attempting to access data or
service that the originating Cust,, does not have permissions
to access.

These assumptions are provided to facilitate a description
of'the IDACS network’s advantages. The scope of the present
disclosure is not limited solely to networks satisfying these
assumptions.

Based on these assumptions, certain capabilities about the
attack detection and prevention capability of IDACS can be
set forth. These capabilities help to illustrate the advantages
and improvements of the systems, components, and method-
ologies in accordance with the present disclosure. Recall that
N is the Authentication Chain Length; there are N SAs and N
SSAs in the approach authentication chain and N SAs and N
SSAs in the return authentication path.

Capability 1: A Ticket,, with incorrect OTP,, will be
detected with up to 2N traitor SSAs and (2N-1) traitor SAs in
the approach and return authentication chain paths if the
authentication chain path is not manipulated.

Justification for Capability 1:

According to Assumption 5, if any SA,, or SSA, is a traitor,
then the attacker will have access to the Seed  necessary to
calculate PID,, correctly. Thus, TDW checks will pass at each
SA, or SSA, even if they are not traitors.

FIG. 26 shows that if there is even one loyal SA,, in the
authentication chain of an exemplary IDACS network imple-
mentation, the attacker does not have access to the Seed
needed to calculate OTP, . This incorrect OTP,, is detected by
the loyal SA, , and the attack is detected and prevented.

However, the strength of IDACS illustrated above is quali-
fied by the limitation set forth in Capability 2.

Capability 2: A Ticket,, with incorrect OTP,, or PID, is not
guaranteed to be detected with one traitor SA and two traitor
SSAs in IDACS if the authentication chain path is manipu-
lated.

Justification for Capability 2:

Under certain circumstances, IDACS cannot guarantee
detection of an attack Ticket,, with one traitor SA and two
traitor SSAs in IDACS if authentication chain path manipu-
lation is allowed. The attacker is allowed to choose the first
SA in the authentication chain, so he chooses a traitor SA.
Since this SA is a Byzantine actor, it calculates the authenti-
cation chain path based on Ticket,, and checks to see whether
the last SSA in the authentication chain is also a traitor.

FIG. 27 shows the situation in which the last SSA in an
authentication chain is also a traitor. In such a situation, the
SA passes Ticket,, to this SSA, which then passes Ticket,, to
a DB, . This action bypasses the OTP,, and PID,, checks that
would be performed by (potentially) loyal SAs and SSAs in
the authentication chain. It is necessary for the last SSA in the
authentication chain to be a traitor, because according to
Assumption 7, DB, will also validate the authentication chain
for the sending SSA. When DB, forms the return ticket
Ticket',,, it will calculate a return authentication chain where
the first SSA in the path cannot (by the rules) be the same as
the last SSA in the approach path. If this SSA happens to be
a traitor also, then it sends Ticket',, directly to the first traitor
SA, which sends it to the attacker’s Cust,,.

Capability 1 and Capability 2 address a) in Assumption 9;
similar capabilities can be offered to address b) in Assump-
tion 9.
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Capability 3: A Ticket,, with correct OTP,, and PID,, but
seeking to access data/services for which Cust,, is not granted
permissions is detected with up to (4N-1) traitor SAs and
SSAs in the approach and return authentication chains if the
authentication chain is not manipulated.

Justification for Capability 3:

Since Ticket,, contains correct OTP,, and TDW, the attack
will not be detected on those grounds. However, each SA and
SSA also checks the data/service targeted by Ticket,, to see if
Cust,, has permissions on it.

FIG. 28 shows a situation in which only one SA or SSA in
the approach or return authentication chain is loyal, and that
an attack is prevented. In such a situation, a non-permitted
Ticket,, is detected, and the attack is prevented.

Capability 4: A Ticket,, with correct OTP,, and PID,, but
seeking to access data/services for which Cust,, is not granted
permissions is not guaranteed to be detected with 1 traitor SA
and 2 traitor SSAs in IDACS if the authentication chain is
manipulated.

Justification for Capability 4:

The justification for Capability 4 is similar to the justifica-
tion for Capability 2.

There is also one final Capability that can be made regard-
ing spoofed IDACS machines.

Capability 4: A spoofed SA, or SSA, is detected as soon as
it communicates with a loyal SA, or SSA,.

Justification for Capability 4:

According to Assumption 6, a spoofed SA, or SSA does
not have access to the Seed,, of the machine it is spoofing,
including the Seed ; needed to calculate XV when communi-
cating with other SA, or SSA,. Therefore, it is unable to
correctly calculate the requisite XV; this situation is detected
by aloyal SA, or SSA,.

When an attack is detected by IDACS, it may fall into one
of several categories, with each category having correspond-
ing root causes. If an attack is detected based on a OTP,, or
PID,, failure, this is because the attacker possesses an incom-
plete subset of the set {Client,, BADGE,, PWDs, PIN, };
additionally, if prior SAs or SSAs correctly authenticated the
attack packet based on OTP, and PID,, they may be con-
trolled or spoofed by the attacker. Ifthe attack is detected base
on an XV failure, this is because the attacker is spoofing one
or more of the SA/SSAs. Each of these situations is handled
differently by IDACS.

When an attack is detected in Algorithm 4, the function
report_and_trace_attack( )(Algorithm 6) is called to invoke
the IDACS real-time digital forensics suite. The inputs to
Algorithm 6 are reasons, which_PID_faded, TK_A, TK_B,
and current_location. reasons indicates the reason the attack
was detected; it may contain one or more of the following
values: OTP_fail, PID_fail, and XV_{fail. which_PID_Tfailed
contains a list of which (if any) of the PIA_ failed. TK_A and
TK_B are the two TKs received by the detecting SA or SSA
(if applicable). “current_location™ indicates the identity of
the SA or SSA detecting the attack. When “report_and_
trace_attack( )” is called, these inputs are packaged into an
attack report (3). If the attack was detected by an SA (1), the
report is sent to an SSA for processing (2 and 3). If the attack
is detected at an SSA (4), then the attack is processed by that
SSA (5). To process the attack, the SSA calls different foren-
sics subroutines based on the reasons for the attack detection.
If the attack failed due to OTP, or PID,, (6), then “trace_at-
tack( )” is called to identify the root attacker, the bot chain
used in the attack, and any suspicious packet types that may
have been used by the attacker to compromise other bots (7);
“identify_bots( )" is called to identify possibilities for traitor
Client,, controlled by the attacker (8); “identify_compro-
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mised_items( )” is called to determine which members of
{Client,, Badge,, Pwdg, PIN,} have been stolen by the
attacker based on correlation with which_PID_failed (9). If
an attack was detected by a failed OTP,,, PID,, or XV (10),
then “identify_bad_SA_SSA()”is called to determine which
SAs or SSAs (if any) are traitor or spoofed. All of these
subroutines are discussed in more detail herein.

Algorithm 6. report and_trace_attack( )

inputs : reasons, which_PID_failed, TK_A, TK_B, current_location

outputs : none

1 if (current _location € SA )

2 dest SSA =random SSA

3 current_location — dest_SSA: {reasons, which_PID_failed,
TK_A, TK_B,

PID(current_location) }

4 else if ( current_location € SSA )

5 dest SSA = current_location
End

at dest SSA:

6  if (OTP_fail e reasons) or (PID_fail € reasons)

7 {sourceTraitorCust, bot_chain, suspicious_pkt_type} =
trace_attack(TK_A)

8  traitorCustBotnet = identify_bots(sourceTraitorCust,
suspicious_pkt_type, SA, SSA)

9  traitorCustltems = identify_compromised_items(which_PID_failed,

TK_A)
End
10 if (XV_fail € reasons) or (OTP_fail € reasons) or (PID_fail € reasons)
11 traitorSAsSSAs = identify_bad_SA_SSA(reasons, TK_A, TK_B)
End

FIG. 29 presents a block diagram representation of an
algorithm that invokes the IDACS real-time digital forensics
suite. Particularly, the block diagram of FIG. 29 is in accor-
dance with Algorithm, showing the relationship between
inputs, outputs and different functions that are called within
the algorithm. Table 7 provides an overview of traceback
algorithms provided by the IDACS real-time digital forensics
suite and what types of attacks they are able to detect:

TABLE 7

Traceback function What it detects

trace_attack() Root traitor Cust,, and other bot Cust,,
used in attack chain

Attacker’s controlled botnet of traitor
Cust,,

Which cryptographic seeds have been
leaked, and by whom { Client,,, Badge,
Pwdg, PIN, }

Which SAs and SSAs are spoofed bad
XV), or traitors (clearing packets with
incorrect OTP,, or PID,,)

identify_bots()

identify _compromised_items()

identify_bad_SA_SSA()

In connection with the following description about the
different digital forensics functions used by IDACS, the fol-
lowing Property informs the disclosure:

Property 7: The different design elements of IDACS (the
distribution of PID seeds, the design of Xchain values, the
design of security log records, etc.) are carefully crafted to
facilitate the real-time digital forensics capabilities of
IDACS. Therefore, IDACS is able to provide high-speed
forensic services in real-time with minimal overhead.

When an attack is detected by IDACS, the real-time digital
forensics suite is able to trace the attack to the root attacker by
correlating the security log records on IDACS machines. In a
fully-realized IDACS system, all data packets (including Cli-
ent-Client packets such as are used in attack chains) may be
required to pass through the SA barrier. Even in a less-com-
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plete IDACS system, the Client, may still maintain security
logs for all of the data packets they send and receive. These
security logs are a key component to the attacker traceback
capability.

In illustrative embodiments, every time an SA, SSA, or
client receives a packet of any type, a record of information
related to that packet is saved in a log. The log record contains
some basic information about that packet, such as origin,
destination, packet type (i.e. Remote Terminal, HTML, FTP,
etc.), and content PID of the information on the Database that
the packet was seeking to access (if applicable). In certain
implementations, all packets (even those not directly access-
ing the database) may pass through the SA/SSA layer, so all
packets may leave records in their logs. In other implemen-
tations, client-to-client communications will not pass through
any SAs or SSAs. In such cases, client logs may also be used
to gain a more complete picture of all network communica-
tions. When an attack is detected, the SSA may search
through these logs to identify the origin of the attack.

Maintaining a log with records for each packet received
over an unduly long period of time may be prohibitively
expensive and time-consuming. Therefore, each SA and SSA
may maintain log records based on a sliding time window of
length t, e.g. t=15 minutes. Logs may be maintained for the
most recent t time of traffic for fast availability, while older
logs can be stored on a backup server.

FIG. 30 shows the format of exemplary log records. The
record may contain standard packet data such as source and
destination IP address, packet sequence number, and packet
arrival time. The record may also contain the current and
parent application PIDs, which can indicate if a client besides
the one at the source IP address initiated this packet. The
record may also contain the packet type, the Content PID
associated with the packet (if the packet is accessing data on
the database), and other PIDs. Finally, the record may contain
the network path which specifies the IP addresses of all the
machines (clients, routers, SAs, etc.) the packet has touched
on its route. Each packet record may protected by several
HMACs generated by hashing the packet record together with
akey shared between that SA and an SSA. This can allow the
SSA in question to verify the authenticity of the packet record
and detect/prevent log tampering by an attacker.

As mentioned, systems in accordance with the present
disclosure may provide attack traceback capability. This
capability can accomplish multiple purposes. For example, it
can identify the origin attacker of a detected attack. As
another example, it can detect all slave clients (i.e. botnet
members) controlled by an attacker. IDACS can also provide
partial tracebacks that provide leads and clues for human
investigators to pursue in the identification of attacker loca-
tions.

One example of the type of traceback that IDACS can
provide is through log correlation. As mentioned, SAs and
SSAs may maintain log records of all packets that pass
through them. Client machines may also maintain logs of sent
and received packets. In certain implementations, client-to-
client communication may all pass through the SA-SSA bar-
rier. Thus, all packets being sent by an attacker to compromise
clients may leave records in the SA and SSA logs. Inthis case,
it may be possible for IDACS to identify the origin of an
attack and provide this information in a real-time forensics
report.

FIG. 31(a) shows an exemplary detected attack packet log
record generated for a data packet that was detected to be an
attack due to OTP, or PID, failure. When a client initiates a
secure session with IDACS, packets transmitted may contain
two fields, “Current Application PID” (also referred to herein
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as CURRENT_UA_PID) and “Parent Application PID” (also
referred to herein as PARENT_UA_PID). The “Current
Application PID” field may contain the PID of the user agent
that sent the packet. If the packet was created in response to an
earlier packet received from another client (but the later
packet is not a “reply” message), then the “Parent Application
PID” field may contain the “Current Application PID” of the
original packet. Otherwise, the “Parent Application PID”
field may contain the same value as the “Current Application
PID” field. For example, if Client A sends a message to Client
B instructing Client B to send a different message to Client C,
then the packet from Client A contains Client A’s Application
PID in both the “Current Application PID” and “Parent Appli-
cation PID” fields. The packet sent from Client B to Client C
will contain Client B’s Application PID in the “Current
Application ID” field and Client A’s Application PID in the
“Parent Application ID” field.

IDACS processing may begin from the assumption that a
given packet was part of an attack chain (see FIG. 25), and
begins to trace the attack chain back to the root attacker. The
trace may be based on the log record items TIME, SOURCE/
DESTINATION_IP_ADDRESS, PARENT/CURREN-
T_UA_PID, and CONTENT_PID. The SSA running the
trace searches its own logs as well as the logs of other SSAs,
SAs, and Clients (if necessary) for the “parent” packet that
directly precedes the detected packet in the attack chain. The
trace searches for a packet that was logged before the attack
was logged (TIME <14830.528934) where the IP Address of
the machine that sent the attack packet is the same as the
destination IP address of the “parent” packet (SOURCE_I-
P_ADDRESS for the attack
packet=DESTINATION_IP_ADDRESS for the “parent”
packet); the DB-side data targeted by the Content(PID, ) in the
“parent” packet is the same as in the attack packet (CON-
TENT_PID=34876105); and the parent UA for the detected
attack packet is the same as the current UA for the “parent”
packet (PARENT_UA_PID for the attack
packet=CURRENT_UA_PID for the “parent” packet). Such
a “parent” attack packet is detected (left side of FIG. 31). The
investigating SSA then compares the CURRENT_UA_PID
and PARENT_UA_PID in the “parent” packet record. If they
are the same, then the machine at SOURCE_IP_ADDRESS
is flagged as the root attacker; if they are different, the
machine at SOURCE_IP_ADDRESS is flagged as a traitor
Client,, and the traceback continues.

The details of this traceback are show in the “trace_
attack( )” function set forth in Algorithm 7. The SSA execut-
ing the traceback receives the log record \TK\ of the detected
attack packet as input. The critical trace parameters are
extracted from this record: the Cust,, who sent TK is marked
as the candidate for the attacker (1), and the time (2), Parent
UA(PID,) (3), and Content(PID,) (4) are isolated. Addition-
ally, the bot_chain and susptctous_pkt_types outputs are ini-
tialized (5 and 6). Until the source attacker has been identified
(7 and 8), the SSA initiates a search of all SSA, SA, and Client
logs (10) searching for a “parent” packet logged before the
current attack packet with parameters on the Destination IP
address, Current UA(PID,), and Content(PID,) (9). If the
F-box(R trv) transform (10) returns no hits on the “parent”
packet (11), the traceback has failed to detect the root
attacker; however, a partial list of bots used in the attack chain
can be returned (12). If a “parent” packet with matching
Current UA(PID,) and Parent UA(PID,) is discovered (13),
then the Cust,, that sent this packet is identified as the root
attacker (15). Additionally, since this packet was used in an
attack chain, this packet’s type is flagged as suspicious (16)
and is used in Algorithm 8 to identify candidate members of
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the attacker’s controlled botnet. Otherwise, the Client that
sent the “parent” packet is marked as one of the bots con-
trolled by an attacker (17), the search parameters are reset
based on the “parent” packet (18 to 21), this packet’s type is
flagged as suspicious (16), and the search continues (8). Once
the root attacker has been identified, the function returns the
identity of the root attacker, the bots that were identified in the
attack chain, and the suspicious packet types (23).

Algorithm 7. trace_attack( )

inputs: \TK\
outputs: sourceAttacker, bot_chain, suspicious_pkt_type
1 sourceAttacker = Cust,, & \TK\

2 sourceTme = current time

3 sourceParentUAPID = Parent UA(PID,) ¢ \TK\

4 sourceContentPID = Content(PID,_) ¢ \TK\

5 bot_chain = null

6  suspicious_pkt_types = null

7  sourceFound = false

8  while (sourceFound == false)

9 parameters = {time © \Ticket,,\ < sourceTime,
destination_IP ¢ \Ticketw\ == sourceAttacker,
Current_UA(PID,) O \Ticket,,\ == sourceParentUAPID,
Content(PID,) < \Ticket,,\ == sourceContentID }

10 source\Ticket,,\ = F-box(R trv, $ A, $ SSA, parameters)

11 if(source\Ticket,\ == null)

12 fail;  return {null, bot_chain}

13 else if((Parent UA(PID,) < source\Ticket,\) ==

(Current UA(PID,) <
source\Ticket,,\))

14 sourceFound = true

15 sourceAttacker = Cust,, ¢ source\Ticket,\

16 suspicious_pkt_types = F-box( [ oncat,

suspicious_pkt_types,
packet_type(source\Ticket,,\))
Else

17 bot_chain = F-box( € oncat, bot_chain, Cust,, ¢ source\Ticket,,\)

18 sourceAttacker = Cust,, & source\Ticket,\

19 sourceTime = time < source\Ticket,,\

20 sourceParentUAPID = Parent UA(PID,) ¢ source\Ticket,,\

21 sourceContentID = Content(PID,) < source\Ticket,,\

22 suspicious_pkt types = F-box(€ oncat,

suspicious_pkt_types,
packet_type(source\Ticket,\))
End
End
23 return { sourceAttacker, bot_chain, suspicious_pkt_types }

Immediately following the call of “trace_attack()” to iden-
tify the root traitor Client and the traitor Client bots in the
attack chain, the SSA running the real-time digital forensics
suite may run the “identify_bots( )” function to identity all
traitor Client bots controlled by the attacker, even those in a
dormant state. In the example shown in FIG. 31, it was seen
that the root traitor Client and other traitor Clients in the
attack chain used “Remote Terminal” packets to carry out
attack activities. Therefore, the digital forensics suite desig-
nates “Remote Terminal” packets, especially those sent by
the root Traitor Client, to be suspicious. The SSA running the
real-time digital forensics suite searches through the security
log records of all SAs, SSAs, and Clients to identify suspi-
cious network traffic.

Other methods can be used to expand the traceback analy-
sis. For example, FIG. 31(5) illustrates how distributed stor-
age may assist in attack traceback. The seeds used to generate
PIDs, Authentication Chain items, and other security param-
eters in IDACS may be stored in physically different loca-
tions, which provides another space-separation aspect to
IDACS. These seeds may be stored and combined in such a
way such that incorrect formation of the security parameters
will provide some indication of which areas have been com-
promised by an attacker. For example, the correct formation
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of certain PIDs and Authentication Chain items and the incor-
rect formation of others could indicate that the Client com-
puter and the Security Badge had been compromised, but that
the User password and the SAs and SSAs were still intact.

FIG. 32 shows an exemplary log record in which the digital
forensics suite searches for “Remote Terminal” packets in the
security logs that were sent by the root traitor Client. Here, the
SOURCE_IP_=75.128.32.146. This search yields a number
of Clients that are strong candidates for being Traitors. This
list of potential Traitor Clients is added to those identified in
the attack chain in “trace_attack( )”; these Clients may be
quarantined and examined in-depth until they can be healed
and returned to service. It should be noted that this algorithm
is capable of detecting dormant traitor Clients even beyond
those that were used in the attack.

Algorithm 8 details the “identify_bots( ) algorithm. The
function receives the identity of the root Traitor Client, any
suspicious packet types as determined by the “trace_
attack( ) algorithm, and SA and SSA as inputs. It creates a set
of parameters (1) to be the input to the F-box(F trv) trans-
form; the packets sought by the F-box( R trv) transform must
be among the suspicious packet types and must have origi-
nated from the attacker detected by “trace_attack( )”. The
function then loops through every SA (2) and every SSA (5),
searching for log records that meet the search parameters (3
and 6). For any security log records that match the conditions,
the Cust,, that were targeted by those packets are added to the
list of possible traitor Clients controlled by the attacker (4 and
D.

Algorithm 8. identify_bots( )

inputs: attacker-Custy, suspicious_pkt_type, SA , SS

outputs: possible_traitors

1 parameters = { packet type(\Tickety\) € suspicious_pKkt_type,
source IP(\Tickety\) == source IP(attacker-Custy) }

2 forindex=1to

3 temp = F-box(R trv, $SA,, mg

4 possible_traitors = F—box(e' oncat, possible_traitors,
destination_IP < temp)
End

5 forindex=1to k

temp = F-box(R® trv, <§ SSA,, parameters

7  possible_traitors = F-box(€ oncat, possible_traitors,
destination_IP < temp)
End

8  return possible_traitors

[N

The space-time separated and jointly evolving relationship
built into IDACS can be used to assist the real-time digital
forensics capabilities. The elements of PID,, are calculated
based on seeds drawn from Client,,, Badge, Pwd,, and PIN,.
However, not every PID, needs to draw seeds from each of
these sources; the locations of seeds used to calculate indi-
vidual PID, can be tailored to meet the security requirements
of the system. In addition to the distributed storage of the
seeds, certain bits are removed from the seeds themselves and
stored in a physically different location. These bits are called
Xbits; they are discussed in more detail herein. The Xbits are
stored on the SAs in the IDACS Network, and they must be
recombined with the cryptographic seeds to correctly calcu-
late the elements of PID,,.

FIG. 33 demonstrates how diftferent PID, can be calculated
using different combinations of cryptographic seeds and
xbits. Type A PID_ are calculated using only seeds from
Client,, Type B PID, calculated using only seeds from Cli-
ent, and the associated Xbits, Type F PID, are calculated
using seeds and associated Xbits from both Client,, and PIN,,
etc. This division accomplishes two purposes. First, separat-
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ing the seeds across different locations increases the com-
plexity for an attacker to correctly construct PID,, as dis-
cussed previously. Second, a seed separation and
combination such as indicated in FIG. 33 can be used as a
forensics tool. If an attack is detected by an SA or SSA due to
PID,, failure, an analysis of which PID, failed and which PID,
were formed correctly can indicate which Client-side items
and Network-side SAs or SSAs are Traitors or have had their
memory compromised. For example, if a Type D PID, was
formed correctly, it may be assumed that the attacker owns the
seeds derived from PIN, as well as the associated Xbits; if a
Type F PID, was formed correctly, it may be assumed that the
seeds stored on Client,, and derived from PIN, as well as the
associated Xbits are owned by the attacker.

An example of the “identify_compromised_items( )" algo-
rithm corresponding to FIG. 33 is shown in Algorithm 9. The
Cust,, that sent the detected attack packet TK, is marked as a
Traitor (1), with the Client,, Badge., Pwd,, and PIN, con-
tained in Cust,, and the SAs storing their corresponding Xbits
all possibly controlled/cloned by an attacker. Based on what
type of PID_ were formed correctly in the attack packet TK |,
certain elements of Cust,, and SA are marked as Traitor
(4-11). The following properties hold true for forensics capa-
bilities in accordance with this exemplary implementation:

Property 8: Due to the seed distribution and PID,_ formation
(as discussed generically in Property 7, the checks performed
in “identify_compromised_items( )” are performed very
quickly with very little overhead.

Property 9: The seed distribution shown in FIG. 33 is very
flexible, and can be adjusted on a per-Client basis to meet the
security needs of the particular Client or IDACS implemen-
tation.

Algorithm 9. identify_ compromised_ items( )

inputs: which_PIDs_failed, TK_A

outputs: traitor_items

1 traitor C= Custw, O TK_A

2 traitor_items = null

3 switch (PIDe & which_PIDs_failed)

4 case Type A, B, E, F, or N: traitor_items =

F-box(€ oncat, traitor_items, Z & compromised_C)

5 case Type C, D, E, F, or G: traitor_items =

F-box(€ oncat, traitor_items, X ¢ compromised_C)

6 case Type G, H, I, J, or K: traitor_items =

F-box(€ oncat, traitor_items, W < compromised_C)

7 case Type I, K, L, M, or N: traitor_items =

F-box(€ oncat, traitor_items, Y ¢ compromised_C)

8 case B, E, or F: traitor_items =

F-box(€ oncat, traitor_items, SA storing xbits for Z < traitor_C)

9 case D, F, or G: traitor_items =

F-box(€ oncat, traitor_items, SA storing xbits for X < traitor_C)

10 case I, J, or K: traitor_items =

F-box(€ oncat, traitor_items, SA storing xbits for W O traitor_C)

11 case K, M, or N: traitor_items =

F-box(€ oncat, traitor_items, SA storing xbits for Y < traitor_C)
End

12 return traitor_items

FIG. 34 graphically illustrates the handling of the XV used
anetwork-side authentication and authorization process. Par-
ticularly, FIG. 34 illustrates the handling of the XV in the
“run_auth_chain( )” algorithm outlined in Algorithm 4.

FIG. 35 shows that multiple iterations of a network-side
authentication and authorization process are called to form a
complete authentication chain. Particularly, multiple itera-
tions of Algorithm 4 are called by Algorithm 1 (7 and 8) in
order to form the complete authentication chain of SAs and
SSAs. The iterations are linked, with the SA, and SSA, ofone
iteration becoming the SA, and SSA, of the next iteration
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(FIG. 34 and FIG. 35). In a given iteration, SA, and SSA,
perform OTP,, and PID,, checks and generate XV, while SA,
and SSA, verify the XV to verify the identity of SA, and
SSA,. At SA,, if the XV, verification fails, it indicates that
SA, is being by an attacker; if the XV, verification fails, this
indicates that SSA, is being spoofed by an attacker. In the
same way, at SSA, if the XV verification fails, it indicates
that SSA, is being spoofed; if XV fails, it indicates that SA,
is being spoofed. These relationships are discussed more
extensively herein.

Additionally, each SA, and SSA, in a given iteration of
Algorithm 4 are the SA| and SSA, for the next iteration, and
will also be performing OTP, and PIN,, checks in the next
iteration. If an SA or SSA finds that the PID@S the check,
but a previous SA or SSA indicated that the PID,, had passed
the check (by passing Ticket,, along the authentication chain),
then this is highly indicative that the previous SA or SSA is a
traitor (having passed verifiably bad TDW) In the same way,
ifan SA, finds that OTP, fails the check, but a previous SA
passed Ticket,, along the authentication chain, this may be
indicative that the previous SA is a traitor. This cannot be
directly verified, since only the previous SA possesses the
seeds to verify his OTP; however, the forensics engine can be
configured on the assumption that it is statistically unlikely
that the seeds to correctly calculate a given OTP could be
obtained without obtaining the seeds for all OTPs.

Dueto the design of TPW, TDW, and the XV relationships,
traitor or spoofed SAs or SSAs can be detected and isolated
very quickly.

Algorithm 10 illustrates how the digital forensics suite
performs this detection.

Property 10: The relationships between the XV values (as
discussed generically in Property 7) and also OTP,, and WDW
are carefully designed to allow traitor or cloned SAs/SSAs to
be detected quickly in real time with very little overhead.

Algorithm 10. identify bad_SA_SSA()

inputs: reasons, TK_A, TK_B
outputs: compromised_machines
1 traitor_spoofed_machines = null
2 sourceA = origin of
TK_A
3 sourceB = origin of TK_B
4 if (TK_A_XV_fail € reasons) OR (TK_A_PID_fail € reasons) OR
(TK_A_OTP_fail € reasons)
5 traitor_spoofed_machines =
F-box( € oncat, traitor_spoofed_machines, sourceA)
end
6 if (TK_B_XV_fail € reasons) OR (TK_B_PID_fail € reasons) OR
(TK_B_OTP_fail € reasons)
7 traitor_spoofed_machines =
F-box( € oncat, traitor_ spoofed_ machines, sourceB)
End
8 return traitor_spoofed_machines

The above-described may also be used to simulate the
attack traceback time for the illustrative IDACS network.
When an attack was detected (i.e. (4), (11), (17), or (23) in
Algorithm 4), this point in time was recorded as T1. After the
attack had been reported to an SSA and the traceback to
identify the root attacker was completed (i.e the “trace_at-
tack()” algorithm called at (7) of Algorithm 6 completes), this
point in time was recorded as T2. After the attacker’s botnet
was identified (i.e. the “identify_bots()” function called at (8)
of' Algorithm 6 completes), this point in time was recorded as
T3. The statistics of interest in this situation were the (T2-T1)
time and the (T3-T1) time. The (T2-T1) time is termed the
“Attack Traceback Time”, since it represents the time it takes
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for the root attacker to be identified after the attack is detected.
The (T3-T1) time is termed the “Botnet Detection Time”,
since it represents the time it takes for the root attacker’s
botnet to be detected after the attack is detected. It should be
noted here that the “Botnet Detection Time” will always be
greater than the “Attack Traceback Time”, since (T3-T1)=
(T2-T1)+(T3-T2).

FIGS. 36-38 show simulation results for the IDACS Net-
work consisting of 4 “partially compromised” SAs and either
1 or 2 “partially compromised” SSAs. FIG. 36 shows the
average attack traceback time for an IDACS network with 1
SSA. FIG. 36 shows that the attack traceback for this simu-
lated IDACS network is extremely fast, with both the root
attacker and its botnet identified in less than 3.5 milliseconds
even for a network of 100,000 Client Devices. Additionally,
the attack traceback time grows logarithmically with the net-
work size; this is because the simulation uses log,(X) to cal-
culate security log search times, since there currently exist
search algorithms that are better than log,(x). Because the
attack traceback time is so short, an IDACS Network can alert
a system administrator and begin network healing procedures
before the attacker even realizes that the attack has been
detected.

An additional benefit of the IDACS system is that attack
traceback time can be improved by scaling the network. FI1G.
37 and FIG. 38 show the Attack Traceback Time and Botnet
Detection Time for an IDACS network, one with 1 SSA, and
one with 2 SSAs. These figures show that the traceback times
can be dramatically improved by expanding the network side
of'the IDACS system; this is because the traceback duties are
spread across multiple SSAs, resulting in a lighter workload
for each machine. These findings provide significant incen-
tive to expand fielded IDACS systems.

In addition to the above-described simulations, a second
simulation suite performed for this research addresses the
effects of the attack traceback combined with quarantine and
healing for Byzantine traitor agents. Given an exemplary
IDACS network under attack by parties that are able to steal
Client authentication items and turn SAs and SSAs into trai-
tors, how well will the attack traceback protect the IDACS
datacenter from illegal (no permission) access? The simula-
tion results presented here attempt to answer that question.

To fully test the capabilities of the illustrative IDACS net-
work of the present disclosure against real-world threats and
attacks, attack scenarios were constructed based on the latest
and most lethal real-world attack vectors. Therefore, these
simulations were carried out under the assumption that all
attempts to hack SAs and SSAs and turn them into traitors
would be accomplished using zero-day attacks. Since zero-
day attacks have not been previously observed, itis difficultto
defend against them. Additionally, through the use of meta-
morphic evolution techniques, it is possible to generate end-
less variants of these zero-day turn-traitor-attacks, each of
which has a unique signature. This method can be used to
defeat security systems that use signature-based scans to
detect known turn-traitor-attacks. Since both of these attack
methods are widely in use today, they will both be considered
in this simulation.

This simulation is based on a number of assumptions, each
of which approximates real-world conditions. The first
assumptions on which this simulation is based are as follows:

Assumption 10: Previously unobserved zero-day turn-trai-
tor-attacks used to gain control over network machines will
require a relatively long time (weeks) for a patch that suc-
cessfully secures that attack’s entry point to be issued.

Assumption 11: A zero-day attack used to gain control over
network machines, once detected and analyzed, can be black-
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listed with a signature-scanning security system very quickly.
A zero-day turn-traitor-attack or a metamorphic variation
thereof, once detected and blacklisted, are detected and
blocked thereafter.

Assumption 101s seen to be true across almost all computer
security vulnerabilities that are being discovered today.
Assumption 11 reflects the strengths of signature-based scan-
ners, although their strength may be slightly overstated to
simplify this simulation. Based on Assumption 11, it follows
that attacker behavior will reflect this reality.

Assumption 12: A zero-day turn-traitor-attack or a meta-
morphic variation thereof, once detected and blocked, will
not be reused by the attacker.

Based on the relative importance of Cust,,, SA, and SSA in
IDACS, they are accorded different levels of protection
against theft (Cust,,) or outside zero-day turn-traitor-attacks (
SA and SSA). Cust,, are used by human users in the field, so
the elements of Cust,, (Clientp, BadgeT, Pwd0, and PINA) are
(relatively) easy to steal, although it may be difficult to steal
a complete set. On the other hand, SA and SSA reside inside
protected network datacenters, so they are relatively more
difficult to gain control over. Thus, the assumptions:

Assumption 13: Completely turning a Client into a traitor
(with access to Client,,, Badge., Pwd,, and PIN;) through
theft or coercion is difficult. An exception would be in an
active battlefield scenario, where a number of human users
(soldiers) could be captured and coerced into turning over all
of the elements of Cust,,.

Assumption 14: Cust,, are easier to turn into traitor bots
than SAs, and SAs are easier to turn into traitor bots than
SSAs.

Finally, any attacker, being intelligent and wishing to
maximize his chances of success, will not launch attempts to
access the IDACS datacenter until he has a certain chance of
success. Thus,

Assumption 15: An attacker will not launch access-DB-
attacks against the IDACS datacenter until he controls a cer-
tain number of traitor Cust,,, SA, and SSA,.

These assumptions are provided to facilitate a description
of'the IDACS network’s advantages. The scope of the present
disclosure is not limited solely to networks satisfying these
assumptions.

This simulation was implemented in MATL.AB, and exam-
ined an exemplary IDACS network consisting of 500 Cust,,
40 SAs, 20 SSAs, and 10 DB (see FIG. 4). Unlike the first
simulation, this simulation did not consider the details of
network transmission speeds or packet processing times. All
packets are considered to be transmitted from one machine to
another in one clock cycle, and all packets are processed in
one clock cycle, with one clock cycle per queued packet.

The simulation consists of two phases. In Phase 1, the
attacker uses turn-traitor-attacks to build a botnet of traitor
Cust,,, SAs, and SSAs for use in IDACS access-DB-attacks.
According to Assumption 15, the attacker builds a botnet
consisting of traitor SAs equaling 60% of all SAs in IDACS,
and traitor SSAs equaling 60% of all SSAs in IDACS (15% of
the traitor SAs and SSAs were spoofed machines). Addition-
ally, the attacker builds a botnet consisting of four traitor
Cust,, for each traitor SA and SSA (this number was experi-
mentally determined to provide a sufficient number of traitor
Cust,, to launch a sufficient number of access-DB-attacks for
the duration of the simulation). In accordance with Assump-
tion 13, this simulation is assumed to represent an active
battlefield situation, so 15% of the traitor Cust,, have full
access to their authentication credentials (Client,, Badge,
Pwdg, and PIN, ). Once a sufficient number of bots have been
obtained, the attacker launches Phase 2.
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In Phase 2, the attacker sends a burst of a high number of
access-DB-attacks. The logic behind the burst is that an
attacker maximizes his chance of successful datacenter
accesses if he sends them quickly; detected and prevented
access-DB-attacks will result in the detection and quarantine
of traitor Cust,,, SAs, and SSAs. By sending a burst of access-
DB-attacks, the attacker makes full use of these bots before
they are detected and quarantined, and the advantage gained
from Assumption 15 begins to slip away. During Phase 2,
access-DB-attacks are launched at an average rate of one
attempt per 15 clock cycles (the actual start times of the
access-DB-attacks are randomized using a normal distribu-
tion over the complete period of Phase 2). If an illegal data
center access is detected and traced to one or more traitor
machines based on the methods discussed herein, that
machine is quarantined (removed from the IDACS network)
and healed over a period of 100 clock cycles, and then
returned to IDACS as a loyal Cust,,, SA, or SSA,. During
Phase 2, the attacker continues to attack Cust,,, SA, and SSA,
and turn them into traitors, thus replenishing the botnet even
as bots are detected and quarantined. In accordance with
Assumption 14, one new Cust,, is turned traitor every 150
clock cycles, one new SA, is turned traitor every 300 clock
cycles, and one new SSA is turned traitor every 600 clock
cycles (this is on average; the actual times the machines turn
traitor are randomized over the period of Phase 2 using a
normal distribution). In accordance with Assumption 15, if
the percentage of traitor SAs or SSAs in IDACS fell below
10%, the attacker stopped launching access-DB-attacks until
both of those numbers rose above 10%. As long as there was
any traitor Cust,, available, access-DB-attacks would con-
tinue. All traitor Cust,, without access to complete authenti-
cation credentials (Client,, Badge., Pwd,, and PIN;,)
launched access-DB-attacks against data/services that par-
ticular Cust,, had permissions to access (the access-DB-at-
tack was illegal due to incorrect OTP,, or PID, ), but all traitor
Cust,, with access to complete authentication credentials
launched access-DB-attacks against data/services that par-
ticular Cust,, did not have permissions to access (since a
traitor Cust,, with access to complete authentication creden-
tials is indistinguishable from a loyal Cust,,, access of data/
services for which that Cust,, has correct permissions cannot
be detected; therefore, this situation was not addressed in this
simulation).

In this simulation, the botnet-building activity of Phase 1
was compressed into a period of 100 clock cycles (in reality,
this botnet building could occur in a “low-and-slow” turn-
traitor-attack strategy over the course of weeks or months).
Phase 2 activity was simulated over a period of 4000 clock
cycles. The length of both the approach and return authenti-
cation chains was 4 (N=4), as would be expected in a fielded
IDACS implementation.

To address the question of zero-day turn-traitor-attacks
with metamorphic variants, the simulation was divided into
three scenarios. In Scenario 1, whenever an access-DB-attack
is detected and prevented, one or more traitor Cust,,, SA, or
SSA, is identified. This traitor is quarantined and healed, but
no attempt is made to analyze the zero-day attack used to turn
that machine into a traitor. Therefore, the same zero-day
turn-traitor-attack can be used again to turn other machines
into traitors during Phase 2. In Scenario 2, there are 20 dif-
ferent zero-day turn-traitor-attacks used to turn machines into
traitors. When a traitor machine is identified, the IDACS
forensics suite analyzes the zero-day turn-traitor-attack that
was used to turn this machine into a traitor. A signature for the
zero-day turn-traitor-attack is identified and added to each
Cust,,, SA, and SSA, ’s blacklist in accordance with Assump-
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tion 11, and will not be successful in turning any more
machines into traitors during Phase 2. Therefore, the attacker
will stop using that zero-day turn-traitor-attack according to
Assumption 12. In Scenario 3, the attacker begins with 20
different zero-day turn-traitor-attacks and 20 metamorphic
variants of each zero-day attack. Each analyzed and black-
listed metamorphic turn-traitor-attack variant will no longer
be used, but many other metamorphic variants are available.
In short, Scenario 1 represents the “simplified case” situation,
Scenario 2 represents the “best case” situation, and Scenario
3 represents the “realistic case” situation. Results from these
three Scenarios are presented herein.

Each of these three scenarios was simulated 10 times, and
the results averaged together. This was done to gain a better
view of broad trends and mask random variations in different
simulation runs.

The purpose of this simulation was to demonstrate how
well IDACS could protect the datacenter from illegal access.
This can be measured in two ways. First, the number of
successful illegal accesses over the period of the simulation
indicates the success of the IDACS defense. Second, the
number of undetected traitor Cust,,, SAs, and SSAs remain-
ing in IDACS over the course of the simulation demonstrate
how effectively IDACS is detecting, quarantining, and heal-
ing traitor machines.

FIG. 39 shows the percentage of the active SAs and SSAs
in IDACS that are traitors for a scenario in which whenever an
access-DB-attack is detected and prevented, one or more
traitor Cust,,, SA, or SSA, is identified. As mentioned, this is
scenario 1, or the “simplified case” situation (because there is
no attack analysis or blocking in this scenario). Note that this
graph counts only SAs and SSAs that are “active”, i.e. not
under quarantine; this measurement was chosen to reflect the
network situation faced by an attacker trying to pass an illegal
datacenter access through IDACS. After the botnet-building
period represented by the first 100 clock cycles of the simu-
lation, access-DB-attacks commence, leading to the discov-
ery and quarantine of traitor SAs and SSAs. Initially both
traitor SAs and SSAs are detected at a high rate, leading to the
increased “sanitation” of the IDACS Network. When the per-
centage of traitor SAs in the system drops below the 10%
mark, access-DB-attacks are no longer launched until addi-
tional SAs are turned into traitors; since fewer access-DB-
attacks are being launched, it leads to traitor SSAs being
identified at a lower rate (since the “first line” of SAs will
trigger illegal access detection, leading to fewer SSAs having
the opportunity to be detected), and with the slow addition of
new traitor SSAs, the percentage of traitor SSAs rises to a
slightly higher level. The percentage of both traitor SAs and
SSAs stabilizes to a relatively low equilibrium point.

FIG. 40 shows the percentage of active SAs and SSAs that
are traitors for a scenario in which there are 20 different
zero-day turn-traitor-attacks used to turn machines into trai-
tors. As explained, this is scenario 2, or the “best case” situ-
ation (because there is attack analysis and blocking with a
limited number of unique zero-day turn-traitor-attacks, so
eventually no more new SAs or SSAs can be turned into
traitors). As in Scenario 1, the percentage of traitor SAs and
SSAs both drop as traitors are identified and quarantined.
Once all 20 unique zero-day turn-traitor-attacks have been
analyzed and blocked, no new SAs or SSAs can be turned into
traitors; therefore the percentage of traitor SAs and SSAs
both drop to levels below the 10% cutoft, and remain level as
no new traitors are added and no more traitors are identified
(since access-DB-attacks are not launched below the 10%



US 9,208,335 B2

59

cutoff). Scenario 2 demonstrates better performance than
Scenario 1; however, the scenario most reflective of a real-
world situation is Scenario 3.

FIG. 41 shows the percentage of active SAs and SSAs that
are traitors for a scenario in which the attacker begins with 20
different zero-day turn-traitor-attacks and 20 metamorphic
variants of each zero-day attack. As mentioned, this is sce-
nario 3, or the “realistic case” situation (because there is
attack analysis and blocking, but with metamorphic turn-
traitor-attack variants, there is a large supply of new, uniden-
tified turn-traitor-attack variants). Since this scenario gives
the attacker a large number of attack variants, the perfor-
mance of Scenario 3 in FIG. 41 is similar to the performance
of Scenario 1 in FIG. 39. However, some detected zero-day
turn-traitor-attack variants are re-used before the attacker
realizes they have been detected and blocked, and are subse-
quently blocked by IDACS; therefore, the performance in
Scenario 3 is somewhat better than Scenario 1 . This can be
observed in the lower equilibrium point of percentage of
traitor SSAs towards the end of the simulation period. Since
Scenario 3 most closely reflects the “real-world” situation
faced by a fielded IDACS system, FIG. 41 demonstrates that
IDACS will provide an exceptional defense against an
attacker with a botnet of Byzantine SAs and SSAs at his
disposal.

FIG. 42 shows the percentage of active Cust,, that are
controlled by the attacker across the simulation for the difter-
ent above-mentioned scenarios. This graph shows that Sce-
nario 3 performs better than Scenario 1 for “sanitizing” the set
of Cust,; this is because as zero-day turn-traitor-attack vari-
ants are detected and blocked, but still re-used before the
attacker is aware they have been blocked, fewer new Cust,,
are being tuned into traitors. Additionally, since more traitor
SAs and SSAs are added in Scenario 3 than in Scenario 2,
more access-DB-attacks are launched, allowing more traitor
Cust,, to be detected in the end. This graph also demonstrates
that a real-world IDACS system will have excellent perfor-
mance in identifying and sanitizing traitor Cust,.

FIG. 43 shows an average number of access-DB-attacks
that were successfully passed through IDACS with the help of
traitor SAs and SSAs in accordance with simulation runs.
This chart shows that the most successful time period for the
attacker is when he has the maximum number of traitor SAs
and SSAs at his disposal (as expected), but that the success
rate drops to almost zero as more traitor SAs and SSAs are
identified and quarantined. Since Scenario 3 is most repre-
sentative of a real-world fielded IDACS system, the perfor-
mance results shown in this graph are encouraging. Addi-
tional simulations demonstrating how confidential data
stored in IDACS can be protected even in the presence of a
low number of successful illegal datacenter accesses is pro-
vided herein.

Characterization 23 pertains to the concept of crypto-
graphic seeds Seedo and explains that Seed, are spread
across  different  locations  (ie.  Seed, < Client,,
Seed,, © Client,, etc.). Algorithms 2 and demonstrate how
these Seed, are collected from across these locations and
combined to calculate OTP,, and PID,,. The cryptographic
keys used to encrypt data residing on Client,, similarly to
these Seed_, are split into pieces and spread across different
locations. However, these cryptographic keys have an addi-
tional space-separation protection; certain bits are removed
from these cryptographic keys and stored on the SAs in the
IDACS Network. To decrypt data residing on Client,, these
bits must be retrieved and reassembled with the cryptographic
keys. These bits may be characterized:
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Characterization 35: The cryptographic keys used to
encrypt data residing on Client, have a certain number of bits
removed and stored in a different location. These bits are
termed Xbits, corresponding to the relevant Cust,,.

FIG. 44 illustrates a mechanism by which Xbits are
removed from the cryptographic keys. In particular, one bit is
removed from each byte of the cryptographic key. These bits
are removed from pseudo-random locations in each byte; the
locations from which bits are removed (and conversely, the
locations where the Xbits should be reinserted when the cryp-
tographic key is being reassembled) are calculated based on
the value of «§ Cust,,; the locations of the removed Xbits are
different for each cryptographic key. As a consequence of this
arrangement, an attacker who manages to steal the contents of
Cust,, will still be unable to decrypt data residing on Client,,
without retrieving the corresponding Xbits from the IDACS
Network side.

Each time the cryptographic key is used for encryption or
decryption, Client,, reforms the cryptographic keys and cal-
culates new Xbit locations base on the updated version of
< Cust,,. As such, an attacker who manages to derive the Xbit
insertion locations for a given cryptographic key at time t will
not possess the correct Xbit insertion points at a later time t'
after < Cust,, has been adjusted. Thus, the space-separated
time-evolving relationship is used to protect the integrity of
cryptographic keys. This difficulty faced by the attacker is
summarized in the following Theorem, which is proved
herein below.

Theorem 3: An attacker who possesses a cryptographic key
and the corresponding Xbits, but does not possess the
< Cust,, necessary to determine the Xbit insertion points,
faces an NP-complete problem to determine the Xbit inser-
tion points.

In accordance with at least one disclosed embodiment, the
IDACS system may be designed to store and protect data or
services in the IDACS datacenter. However, this design can
also be used to help protect data stored on Client devices. Data
stored on Client, is encrypted using encryption keys stored
across multiple locations (Client,,, Badge, Pwdg, and PIN, );
this guarantees that an attacker must have access to all of these
items to decrypt the data.

FIG. 45 shows that pieces of the ciphertext are removed
and stored in the IDACS datacenter. These pieces must be
retrieved from the datacenter to correctly decrypt the data
stored on Client,,.

Characterization 36: When encrypted data is stored on
Client,,, segments of data are removed from the ciphertextand
stored in a physically different location. These removed seg-
ments are called Xslices.

All of the Xslices that are removed from a Client-side
ciphertext are stored in the IDACS datacenter (FIG. 45). The
Xslices may be stored in a single contiguous block (Storage
Method 1), or they may be split and stored across multiple
locations (Storage Method 2).

To decrypt data stored on Client,,, one must have access to
the ciphertext stored on Client,,; all of the locations storing
pieces of the encryption keys (Client,,, Badge,, Pwd,, and
PIN,); the Xbits for the encryption keys, which are stored
across multiple SAs in IDACS; and the Xslices that are stored
across multiple DB in the IDACS datacenter. Additionally,
each time the data stored on Client,, is decrypted to be viewed,
the value of $ Cust,, is updated, and the data is re-encrypted
with new cryptographic keys that have new Xbits, and new
Xslices are removed from the ciphertext and stored at new
locations in the datacenter. By combining space-separation
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and time-evolving characteristics, this IDACS encryption
scheme can achieve a much higher level of security than
simple encryption.

FIG. 46 shows an additional security measure, in which the
encryption/Xbits/Xslices can be applied in multiple layers to
protect high-sensitivity data. In addition to providing more
complex security, this provides additional options for space-
time evolving protections. At certain time intervals, the top
level of encryption can be re-processed with new encryption
keys/Xbits/Xslices, while the lower levels are left untouched;
in this way, the security is time-evolving with a minimum of
effort.

The location and length of the Xslices in the ciphertext are
pseudorandom; they are calculated based on S Cust,,
according to Characterization 37 and Characterization 38.
This pseudorandomness contributes to the strength of the
IDACS encryption, as addressed in above.

Characterization 37: Given $ Cust,, a block of ciphertext
to have Xslices removed, and the PID of that data block, the
F-box(data-block-offset) transform returns the length
between the beginning of the block of data or the end of the
previous xslice, and the beginning of the next xslice. This
transform also updates $ Cust,, so that the next call to the
transform will return the length of the next sub-block. This
transform must produce the same sequence of lengths for
consecutive transform calls for a given data block PID after
< Cust,, has been reinitialized, so that data blocks may be
disassembled and reassembled. The sub-block lengths are
determined based on the cryptographic hash of secret seeds
stored in $ Cust,,. This transform is represented by

local_data_block_length=F-box(@ ffset, $ Cust,,)

Characterization 38: Given $ Cust,,, a block of data to
have xslices removed, and the PID of that data block, the
F-box(xslice-length) transform returns the length of the next
xslice to be removed from the data block. This transform also
updates § Cust,, so that the next call to the transform will
return the length of the next xslice. This transform must
produce the same sequence of lengths for consecutive trans-
form calls for a given data block PID after <$ Cust,, has been
reinitialized, so that data blocks may be disassembled and
reassembled. The xslice lengths are determined based on the
cryptographic hash of secret seeds stored in S Cust,,. This
transform is represented by

local_xslice_length=F-box(X Lth, $ Cust,,)

FIG. 47 demonstrates how transforms are used to divide the
ciphertext into ablock of Xslices and a block of ciphertext. An
exemplary process is set forth in Algorithm 11, with the
addition of another F-box transform characterized in Charac-
terization 39. Finally, the entire multiple-layer encryption
process illustrated in FIG. 46 is formalized in Algorithm 12,
which also references Characterization 40.

Characterization 39: Given an input string or byte array, the
F-box(substring) transform returns a substring or sub-array
based on specified indices. The transform is represented by

local_xslice=F-box (88 tring, data_block, offset, length)

The “data_block™ parameter is the input string or byte
array, the “offset” parameter is the index indicating where in
“data_block” the desired substring begins, and the “length”
parameter indicates the length of the desired substring.

Characterization 40: Given a block of data and S Cust,,
the F-box(encrypt) transform encrypts the block of data using
encryption keys provided by $ Cust,, and returns the cipher-
text along with the updated version of $ Cust,,. This trans-
form is represented by

{$ Cust,,, ciphertext}=F-box(® ncrypt, $Cust,, dat-

a_block)
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Algorithm 11. remove_xslices( )

inputs : 9 Cust,,, data_block

outputs : ¥ Cust,, data_block’, xslices

1 pointer = index of 1¥ byte of data_block

2 xslices = empty string

3 data_block’ = empty string

4 while (pointer < data_block.length) do

5 local_data_block_length = F-box(@ ffset, $ Custw)

6 local_xslice_length = F-box(X Lth, < Cust,,)

7 local_data_block =

F-box( 88 tring, data_block, pointer, local_data_block_length)
8 local xslice = F-box(88 tring, data_block, [pointer +
local_data_block_length], local_xslice_length)

9 xslices = F-box(€ oncat, xslices, local_xslice)

10 data_block’ = F—box(c oncat, data_block’, local_data_block)
11 pointer = pointer + local_data_block_length + local_xslice_length
end

Algorithm 12. encrypt_data( )

inputs : < Custy, data_block, num_layers

outputs : ~8 Custy,, ciphertext, xslices

1 ciphertext = data_block

2 xslices = empty string

3 for index = 1 to num_layers

4 {SCusty,, ciphertext } = F-box(® ncrypt, ¥ Custy,

ciphertext)

5 {8 Custy, ciphertext, temp_xslices } =

remove x_slices(~ Custy,, ciphertext)

6 xslices = F-box(€ oncat, xslices, temp_xslices)
End

The use of Xslices in the IDACS Client-side data encryp-
tion scheme leads to several theoretical implications which
demonstrate the security of this encryption scheme. First,
consider the situation where the Xslices extracted from a
given piece of data’s ciphertext are stored in a contiguous
block in a single location (Storage Method 1 in FIG. 45).
Alternatively, when Cust,, requests these Xslices from the
IDACS datacenter, they are returned to Cust,, in a single block
of data. An attacker who manages to retrieve the ciphertext
and the block of corresponding Xslices, but does not possess
<$ Cust,,, and thus cannot perform the F-box(© ffset) or
F-box( X Lth) transforms in Algorithm 11, is faced with the
problem of determining 1) where the ciphertext splits for the
insertion of Xslices, and 2) where the contiguous block of
Xslices splits into individual Xslices. The difficulty of 1) is
addressed in Theorem 4, and the difficulty of 2) is addressed
in Theorem 5.

Theorem 4: An attacker who possesses a ciphertext block
requiring Xslice insertion, but does not possess the SCust,,
necessary to determine the Xslice insertion points, faces an
NP-complete problem to determine the Xslice insertion
points.

Theorem 5: An attacker who possesses a block of concat-
enated Xslices extracted from a ciphertext, but does not pos-
sess the SCust,, necessary to determine the lengths of and
separated individual Xslices, faces an NP-complete problem
to separate the individual Xslices.

A second situation, where individual Xslices are stored
across multiple DB in the IDACS datacenter (Storage Method
2 in FIG. 45), presents a similar problem. Consider an
attacker who is able to retrieve all the individual Xslices
associated with a certain piece of Client-side data’s cipher-
text. However, without access to § SCust,,, the attacker is
unable to determine the correct order in which these Xslices
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should be arranged for reinsertion into the ciphertext. This
problem is addressed in the following Theorem.

Theorem 6: An attacker who possesses all Xslices
extracted from a ciphertext, but does not possess the
$ SCust,, necessary to determine the order in which these
Xslices should be re-inserted into the ciphertext, faces an
NP-complete problem to correctly order the individual
Xslices.

The preceding Theorems are proved herein.

As explained above, Xslices may be used to protect the
confidentiality of encrypted Client-side data. Additionally,
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Segmenting data on the single file-level provides benefits
in terms of both security and performance, which are sum-
marized in Table 8. If a single segment of a file is decrypted,
the number of Xslices retrieved from the datacenter as well as
the amount of decrypted plaintext exposed is less than if the
encrypted file were non-segmented. Additionally, the time
required to complete this operation is constant (O(1)) rather
than linear (O(x)). If all segments of the file are decrypted,
then there is no relative advantage over a non-segmented
approach. Table 8 provides a comparison of segmented vs.
non-segmented data encryption for file of length X.

TABLE 8

Segmented file
(decrypting one
segment)

Segmented file

Non-segmented file (decrypting entire file)

Performance

Time to retrieve Request Xslices: O(1)

Kslices

Request Xslices: O(x)
Send XSlices: O(x)
Insert Xslices: O(x)

Request Xslices: O(1)
Send XSlices: O(1)
Insert Xslices: O(1)

Send XSlices: O(x)
Insert Xslices: O(x)

Total: O(x) Total: O(1) Total: O(x)
Time to decrypt Ox) o(1) Ox)
Total time Ox) o(1) Ox)
Security
Kslices exposed Ox) o(1) Ox)
Decrypted Ox) o(1) Ox)
plaintext
exposed
30

distributed Xslices can be combined with data segmentation
gain additional security by minimizing the level of decrypted
data exposure and minimize the damage caused by an attacker
who is able to successtully pass several illegal IDACS data-
center access requests.

The standard approach to file encryption and decryption is
to decrypt an entire protected file at the time of access. Unfor-
tunately, this exposes the entire contents of the protected file
to an attacker who can steal a Client,, on which a currently
decrypted file is being viewed. The concept of the space-time
evolving relationship can be used to minimize this risk.

FIG. 48 shows an exemplary method of data segmentation
of a single file. Rather than encrypting a file in a single
“block”, the file can be divided into multiple “segments”
(e.g., one page of the file equates to one segment). A “navi-
gation” file associated with the encrypted data file is formed;
this navigation file contains metadata regarding each segment
in the data file, such as where each segment begins and ends
in the ciphertext, which Xslices are used in that segment, and
where those Xslices are inserted into the ciphertext. When a
user wants to view part of the encrypted file, the contents of
the navigation file are presented as a “Table of Contents”. The
user selects the segment he wishes to view, and Cust,
requests the Xslices for the specified segment, inserts them
into the ciphertext, and decrypts that particular segment. The
remaining segments in the file are not decrypted unless they
are specifically accessed later.

Segmenting an encrypted data file in this manner enhances
data security in several ways. First, in the event that a Client,
being used to decrypt and view data is stolen, the amount of
decrypted data residing on Client,, is limited. Additionally, if
an attacker is able to force a few illegal IDACS datacenter
access requests through IDACS, the encrypted data that
attacker can recover is limited to a few file segments rather
than the same number of files.
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The results shown in Table 8 may be used as justification
for the following:

claim 5: Segmenting encrypted files and decrypting and
issuing Xslices one segment at a time increases security and
performance if one or a few pages are decrypted, but has no
effect on security or performance if an entire file is decrypted.

As explained above, data segmentation can be used to
protect a single encrypted data file; the same concept can also
be used to protect and encrypt a file directory tree. FIG. 49
shows a file directory tree in which different levels of folders
correspond to the “navigation” file in FIG. 48. They are files
that do not contain actual data, but only pointers to the actual
data files. The actual data files that are the leaf nodes of this
tree correspond to the ciphertext segments in FIG. 48. In FIG.
49, each Zone is a separate file with its own Xbits and Xslices
residing in the IDACS datacenter, and each leaf node data file
also contains its own Xbits and Xslices. Using this tiered
encrypted File Directory Tree is ideal for a situation where
encrypted data is maintained on the Client-side with Xbits
and Xslices stored on IDACS Databases. Decrypting the File
Directory Tree requires that Xbits and Xslices be retrieved to
decrypt each successive Zone. If an attacker is able to pass a
few access-DB-attacks, he may be able to gather some infor-
mation on the structure of the File Directory Tree, but it may
not be enough to recover any of the actual data files. Addi-
tionally, this structure obfuscates information regarding the
size, quantity, and organization of the data files in the File
Directory Tree by minimizing the amount of file pointers and
file data that are exposed during a single file access, as seen in
the following example. Obfuscating this information also
minimizes the number of targets an attacker can address.

Navigating through the encrypted File Directory Tree is
similar to navigating through any file explorer program on a
PC. FIG. 50 shows a user retrieving a single data file from a
File Directory Tree. The user initially possesses encrypted
pointer information regarding the “root” of the File Directory



US 9,208,335 B2

65

Tree. The user requests the Xbits and Xslices to decrypt the
“root” file residing on Cust,, revealing the contents of Zone 1
(Folder 1). The user then requests the Xbits and Xslices to
decrypt the Folder 1 pointer file (Zone 2), revealing the chil-
dren folders of Folder 1 (Folders 2, 3, and 4). The user pro-
ceeds through Zone 5 and Zone 14 to reach the target File 25.
Through this process, only information regarding folders and
their children along the direct path to the target (File 25) are
revealed; information regarding unexplored folders is not
revealed to the user.

Table 9 illustrates the performance of a non-segmented File
Directory Tree compared to the segmented version. Table 9
provides a comparison of performance of segmented vs. non-
segmented File Directory Trees containing x data files. The
performance of the segmented version exceeds that of the
non-segmented version if a single file is retrieved; however,
the performance of the segmented version drops if all of the
files in the Directory Tree are retrieved. For its application in
IDACS, this tradeoff in performance is considered acceptable
in return for the corresponding increase in security, which is
demonstrated in Table 9.

TABLE 9
Non-segmented File Segmented File
Directory Tree Directory Tree
Time to Request File Request Zone: O(1)
locate a Directory Tree: O(1) Send Zone: O(1)
single file Send File Decrypt Zone: O(1)
Directory Tree: O(x) Repeat for the depth of the
Decrypt File File Directory Tree:
Directory Tree: O(x) O(log x)
Total: O(x) Total: O(log %)
Time to decrypt o) o(1)
a single file
Total for a Ox) O(log x)
single file

Total for all
files in File
Directory Tree

O(x) (because File
Directory Tree only needs
to be retrieved once)

O(x log x) (because
potentially entire depth of
File Directory Tree must
be retrieved for each
file)

Table 10 compares the security provided (in terms of how
much file data and pointers are exposed) for non-segmented
and segmented File Directory Trees. Table 10 provides a
comparison of security of segmented vs. non-segmented File
Directory Trees containing x data files. If a single file is
accessed, the segmented version provides higher security by
not exposing the file data and pointers for non-accessed files;
of course, this advantage is lost if all of the files in the
directory tree are accessed. In either case, the segmented
version provides a higher level of security by forcing more
authentication and permissions checks by a factor of log x.
Since the user must potentially navigate the depth of the File
Directory Tree for each file accessed, retrieving Xbits and
Xslices from the IDACS datacenter for each zone accessed,
the segmented version forces more OTP,, and TDW checks,
making a traitor Cust,, controlled by an attacker more likely
to be detected.

TABLE 10
Non-segmented Segmented
File File
Directory Tree Directory Tree

For a single file access

How many
files exposed

o) o)
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TABLE 10-continued
Non-segmented Segmented
File File
Directory Tree Directory Tree

How many file pointers
(leaf nodes) exposed

O(x) (all file
pointers exposed)

O(1) (only files in
folder containing
target file)
How many folder O(x) (all folder O(log %)

pointers exposed (by  pointers exposed)
decrypting zones)
How many
authentication/
permissions checks
For all files in
Directory Tree accessed

o(1) O(log %)

How many
files exposed
How many file pointers
(leaf nodes) exposed
How many folder
pointers exposed
(by decrypting zones)
How many
authentication/
permissions checks

Ox) Ox)
O(x) (all file
pointers exposed)
O(x) (all folder
pointers exposed)

O(x) (all file
pointers exposed)
O(x) (all folder
pointers exposed)

Ox) O(x log x)

The results displayed in Tables 9 and 10 may be taken as
justification for the following claims.

Claim 6: Segmenting the File Directory Tree and allowing
a user to decrypt one zone at a time, as compared to a File
Directory Tree system that provides the entire directory tree at
once, for a single file access in a tree containing x files:

a) Improves the efficiency of retrieving a single file from

O(x) to O(log x)

b) Improves security by reducing the number of exposed

file pointers from O(x) to O(1); and

¢) Improves security by increasing the number of required

authentication/permissions checks from O(1) to O(log
X).

Claim 7: Segmenting the File Directory Tree and allowing
a user to decrypt one zone at a time, as compared to a File
Directory Tree system that provides the entire directory tree at
once, for accessing every file in a tree containing x files:

a) Reduces the efficiency of retrieving all files from O(x) to

O(x log x)
b) Improves security by increasing the number of required
authentication checks from O(x) to O(x log x)

Mathematical proofs for Theorems 3-6 are now provided.
However, first, a short review of the Theorems to be proved is
provided.

Theorem 3: An attacker who possesses a cryptographic key
and the corresponding Xbits, but does not possess the SCust,,
necessary to determine the Xbit insertion points, faces an
NP-complete problem to determine the Xbit insertion points.

Theorem 4: An attacker who possesses a ciphertext block
requiring Xslice insertion, but does not possess the SCust,,
necessary to determine the Xslice insertion points, faces an
NP-complete problem to determine the Xslice insertion
points.

Theorem 5: An attacker who possesses a block of concat-
enated Xslices extracted from a ciphertext, but does not pos-
sess the SCust,, necessary to determine the lengths of and
separated individual Xslices, faces an NP-complete problem
to separate the individual Xslices.

All three cases represent a “splitting” problem, where a
block of data must be split at certain points to re-insert
extracted information (Theorem 3 and Theorem 4) or to sepa-
rate the extracted information into pieces for re-insertion
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(Theorem 5). In essence, the problem requires the attacker to
recreate the sequence of outputs from repeated calls to the
F-box( X Lth) or F-box(Q ffset) transforms, as demonstrated
in FIG. 47. Although the outputs of these transforms are
calculated based on the value of $ Cust,, in a fielded IDACS
system, the lengths of individual Xslices or the data blocks in
the ciphertext between Xslices are chosen from a finitely long
list of known possible lengths. In the case of Xbit insertion,
there are a finite number of possible insertion points in each
byte for the corresponding Xbit (8 possible positions). There-
fore, solving these problems requires recreating a sequence of
numbers (lengths) drawn from a known, finite list.

FIG. 51 and FIG. 52 demonstrate “splitting” problems,
used to visualize aspects of proofs showing advantages of the
illustrative IDACS network. Particularly, F1G. 51 and FIG. 52
show where a block of data must be split at certain points to
re-insert extracted information or to separate the extracted
information into pieces for re-insertion. To solve these prob-
lems, one member from each column must be selected, with
the final sequence of selections representing the actual divi-
sion of Xslices/Data Blocks or insertion points for Xbits.
These problems can be represented in terms of graph theory.
Let the options in each column be represented by a set of
vertices V.

FIG. 53 shows the splitting problem represented in terms of
graph theory, used to visualize aspects of proofs showing
advantages of the illustrative IDACS network. Consistent
with the concept of “graph coloring”, each vertex in the same
column is assigned the same color, with different colors
assigned to each column (represented by shapes in FIG. 53).
Each v&EV is connected by an directed edge e, e€E, to every
other v in an adjacent column (in FIG. 53, only a few e are
shown for the sake of simplicity). Each e€E has an associated
edge weight W(e), 0=sW(e)<l, where W(e) represents the
probability that the {v1, v2} connected by e, with their
respective values and colors, are both present in a path which
contains one v of each color that represents the correct
sequence Xslice lengths etc. (the method for determining
these weights are discussed herein)

FIG. 54 shows a maximum weight path, used to visualize
aspects of proofs showing advantages of the illustrative
IDACS network. Particularly, FIG. 54 shows the path con-
taining one v of'each color that has the highest sum W(e) of all
such paths (i.e the Maximum Weight Path), which should
represent the correct sequence of Xslice lengths etc.

Now, solving the problem posed in Theorem 3, Theorem 4,
or Theorem 5 is equivalent to solving this Maximum Weight
Path problem. This problem may be formalized by specifying
that a path of length Z (where Z is the number of columns)
must be found. This is now the Maximum Weight Directed
Path of Specified Length (MWDPSL) problem, which is
proved NP-Complete herein. Thus, the NP-Completeness of
Theorem 3, Theorem 4, and Theorem 5 is proved.

Theorem 6: An attacker who possesses all Xslices
extracted from a ciphertext, but does not possess the SCust,,
necessary to determine the order in which these Xslices
should be re-inserted into the ciphertext, faces an NP-com-
plete problem to correctly order the individual Xslices.

The proof for Theorem 6 is identical to the proof for Theo-
rem 1, with the Seedo in Theorem 1 replaced by the Xslices
in Theorem 6. The Xslice ordering problem in Theorem 6
may also be represented by the Maximum Weight Path of
Specified Length (MWPSL) problem, which is proved NP-
Complete herein. Thus, the NP-Completeness of Theorem 6
is proved.

While Theorem 3, Theorem 4, Theorem 5, and Theorem 6
have been proved NP-complete, the value of this proof must
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be qualified. NP-completeness speaks only to the worst-case
complexity of a given decision problem (which is that the
complexity grows exponentially with the problem size); there
may be other factors that can significantly reduce the com-
plexity of a problem.

FIG. 55 shows the situation in which the edge weights in
the graph are relatively uniform, where the complexity of
finding the Maximum Weight Path is close to the worst-case
scenario, to visualize aspects of proofs showing properties of
the exemplary IDACS network security procedures. FIG. 56
shows the situation where the edge weights are not relatively
uniform, where an algorithm (or a human analyst) can sig-
nificantly reduce the complexity of finding the Maximum
Weight Path by picking out the high-weight edges that are
more likely to be part of the solution, to visualize aspects of
proofs showing properties of the exemplary IDACS network
security procedures.

Consider the example of reassembling fragmented data.
Generally, highly-patterned data will result in stronger pat-
tern recognition, which will result in a graph with a few
high-weight edges. Therefore, highly-patterned data will
result in a Maximum Weight Path reassembly problem that
has a complexity significantly less than the worst-case expo-
nential. It has been reported that highly-patterned data does
indeed lead to faster and more accurate file reassembly. Thus,
a relevant inquiry is whether the fragmented, distributed
ciphertext (Xslices and their associated ciphertext) that is
present in IDACS produce a uniform or non-uniform edge
weight distribution in the graph.

To address this issue, one may analyze the “randomness”
of'the type of ciphertext fragments that are present in IDACS
to judge what type of edge weight distribution a Maximum
Weight Path model applied to these fragments would gener-
ate. This analysis was performed using a software package
created by the National Institute of Standards and Technology
(NIST), which provides a battery of tests (referenced above)
that analyzes the outputs of Random Number Generators
(RNGs) to measure their “randomness” by looking for pat-
terns in the outputs. The battery consists of 15 individual
tests, each of which measures different aspects of “random-
ness” in the data. Each of these tests ask the question: “If the
algorithm that generated this data sample was truly random,
what is the probability that this specific data sample could
have been generated?” The individual tests respond with a
p-score in the probability range [0, 1]. The NIST standard
recommends using a passing score, or “significance level”, of
0.01. Some truly random data samples will fail the tests and
generate a “false positive” for randomness due to weaknesses
in the test; therefore, two types of statistics are recommended
for analyzing the test p-scores.

The first statistic looks at the proportion, or percentage, of
tests with passing p-scores According to the parameters in A.
R.etal., “A Statistical Test Suite for Random and Pseudoran-
dom Number Generators for Cryptographic Applications,”
Gaithersburg, Md., 2010, for a set of tests run with 1000 data
samples, a truly random RNG will have a minimal proportion
01 0.9805068, i.e. a minimum pass rate of 98.05%. The sec-
ond statistic looks at the distribution of the p-scores. For a set
of truly random data samples, it is expected that the p-scores
should be evenly distributed. The evenness of the distribution
can be measured by calculating the P-value, for each test
based on the chi-square statistic; if each test has a
P-valueT =0.0001, then the p-scores are considered to be
evenly distributed.

To measure the randomness of ciphertext blocks, the NIST
battery was applied to two sets of data. The first set of data
consisted of samples of normal AES ciphertext blocks (rep-
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resenting a segment of AES ciphertext with the correct Xslice
re-inserted), and the second set consisted of samples of two
normal AES ciphertext blocks encrypted with two different
AES keys back-to-back with each other (representing a seg-
ment of AES ciphertext with an incorrect Xslice re-inserted).
This test was designed to determine whether there was any
discernible difference between the “pattern” (or randomness)
of a correctly- and incorrectly- re-inserted Xslice. Both data
sets consisted of 1000 samples, each of which was 10° bits
(1.25*10° bytes) long. The samples in the first data set con-
sisted of plaintext encrypted using AES in CBC mode, using
aunique key for each sample. The samples in the second data
set consisted of the same plaintext encrypted using AES in
CBC mode, but each sample was split into two halves, each of
which was encrypted using a unique key).

The NIST battery of tests consists of 15 individual tests.
Two of these tests are run twice during the course of the
battery; results for both of the tests are reported here. Three of
the tests are run a number of times; results for two randomly
selected instances of those tests are reported here. All other
tests were run once; the results are reported here. In total, 20
separate test results are reported.

FIG. 57 (a) shows the proportion of passing NIST tests for
an exemplary IDACS network for a first data set, which
represents a “matched” Xslice and ciphertext. FIG. 57 (b)
shows the proportion of passing NIST tests for an exemplary
IDACS network for a second data set, which represents a
“mismatched” Xslice and ciphertext (or two concatentated
Xslices or ciphertext segments that were not adjacent in the
original ciphertext). It can be seen that all but one test result
pass the minimum proportion requirements; more impor-
tantly, both data sets are demonstrated to be “random”, and
there is no distinguishable difference between the proportions
for the two data sets.

Table 11 lists the P-value - for all of the NIST tests for both
the “matched” and “mismatched” ciphertext fragments. It can
be seen that all tests for both data sets pass the minimum score
01'0.0001. Thus, the two data sets may be considered equally
“random”. Therefore, it can be concluded that both matching
and mismatching ciphertext fragments would generate uni-
form edge weights in a weighted graph. This indicates that
there is no discernible difference (pattern-wise) between
adjacent ciphertext blocks (ciphertext joined with associated
Xslices) and non-adjacent blocks (concatentated Xslices or
ciphertext with Xslices removed), and that the graphs gener-
ated to solve Theorem 3 through Theorem 6 would have
uniform edge weights, maximizing the eftect of the NP-com-
plete property.

Table 11 provides a comparison of the P-value, for NIST
tests for “matched” ciphertext fragments and “mismatched”
ciphertext fragments.

TABLE 11
Matched Mismatched

Test # Ciphertext Ciphertext
1 0.147815 0.514124
2 0.173770 0.325206
3 0.528111 0.605916
4 0.340858 0.689019
5 0.196920 0.626709
6 0.875539 0.500279
7 0.727851 0.039073
8 0.162606 0.570792
9 0.174728 0.647530
10 0.323668 0.153763
11 0.867692 0.574903
12 0.649612 0.794391
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TABLE 11-continued
Matched Mismatched
Test # Ciphertext Ciphertext
13 0.522100 0.344048
14 0.437274 0.974555
15 0.243466 0.291249
16 0.888892 0.356948
17 0.105377 0.148760
18 0.504219 0.948298
19 0.156373 0.081013
20 0.257004 0.705466

The simulations used to examine the effect of Xbits,
Xslices, Single File Data Segmentation, and File Directory
Tree Segmentation on increasing IDACS security used the
same simulation suite discussed above. To simulate the use of
Xbits, Xslices, and Data Segmentation, the simulation was
expanded to make the access-DB-attacks directed towards
accessing the contents of a Segmented File Directory Tree
and the data files it stores.

FIG. 58 illustrates the Segmented File Directory Tree used
in simulations of the illustrative IDACS network. Each Trai-
tor Cust,, in the simulation had legal access (permissions) to
access 3 random data files in the File Directory Tree; however,
no Traitor Cust,, had access to the full set of authentication
tokens (Client,,, Badge.; Pwd,, and PIN; ). Because of this, all
access-DB-attacks were illegal. Bach Traitor Cust,, began
with the contents of the File Directory Tree (minus Xslices)
encrypted on his Client,, with the Xbits and Xslices neces-
sary for decryption residing in the IDACS datacenter. Each
Traitor Cust,, began with a pointer to the “root” of the File
Directory Tree; he would need to retrieve the Xbits and
Xslices necessary to decrypt the “root” from the IDACS
datacenter to access the “root’s” contents (the pointers for the
Level 1 Folders). He would then need to retrieve the Xbits and
Xslices to decrypt a given Level 1 Folder from the IDACS
datacenter to access that Level 1 Folder’s contents (the point-
ers to the children Level 2 Folders). A Traitor Cust,, would
need to repeat this process until he was able to retrieve all four
Segments of a target Data File.

Bach Traitor Cust, in IDACS possessed the same
encrypted File Directory Tree; however, each Traitor Cust,,’s
File Directory Tree was encrypted using different encryption
keys, different Xslices, and different Content(PID,) associ-
ated with the store Xbits and Xslices. Therefore, Traitor
Cust,, were not able to collaborate with each other by sharing
Content (PID,) and thus “skipping over” the retrieval of a
given folder; all Traitor Cust,, were forced to completely
decrypt their own File Directory Trees. Additionally, each
Traitor Cust,, contained only the portions of the File Direc-
tory Tree that were “ancestors” of the Data Files that particu-
lar Cust,, had permissions to access; in this simulation, Trai-
tor Cust,, were unable to access files for which they did not
have permissions. However, the group of Traitor Cust,, was
able to collaborate with each other in a limited way; if one
Traitor Cust,, had retrieved a particular Data File Segment, all
other Traitor Cust,, would seek to retrieve other Data File
Segments, rather than pursue data that had already been suc-
cessfully recovered. Additionally, the group of Traitor Cust,,
would give priority for retrieval attempts to the Traitor Cust,,
with the deepest exploration into the File Directory Tree, thus
focusing the resources of Traitor SAs and SSAs towards the
Traitor Cust,, with the highest likelihood of successfully
accessing Data File Segments.

During this simulation, two separate IDACS datacenter
accesses were completed to decrypt a single folder/data file
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pointer/data file segment; one access to retrieve the Xbits, and
one access to retrieve the Xslices. The length of the approach
and return authentication chains was 2 (N=2); this parameter
was shortened from the previous value of 4 to allow more
access-DB-attacks to succeed during this simulation. This
simulation used the turn-traitor-attack vectors and metamor-
phic variations defined for Scenario 3 herein, with 40 attack
vectors and 100 variations per attack vector (these parameters
were increased to mask the limiting effects of these param-
eters from the results of this simulation). Phase 2 of the
simulation began after a threshold of 90% of the SAs and
SSAshad been turned into traitors, with a single Traitor Cust,,
for each Traitor SA or SSA. This 90% threshold is much
higher than what we would expect to see in a real-world
situation; however, it was set at that level for two purposes.
First, the 90% threshold represents a catastrophic scenario; if
IDACS is capable of defending against this type of scenario,
then the real-world performance is expected to be much
higher. Second, it was necessary to raise the threshold to 90%
for an appreciable number of access-DB-attacks to succeed
so that the effect on the Segmented File Directory Tree could
be observed. Access-DB-attacks would cease if the percent-
age of active SAs or SSAs that were traitors fell below 15%.
Additionally, no SAs or SSAs in this simulation were
spoofed; all traitor SAs or SSAs were completely functional
traitors.

During Phase 2 of this simulation, if a Traitor Cust,, was
identified, it would be quarantined and the entire File Direc-
tory Tree residing on that Cust,, would be “re-encrypted”.
Therefore, if that Cust,, was later turned into a Traitor, he
would have none of the File Directory Tree decrypted, and
would have to start again from the “roof”. However, once a
Data File segment was retrieved, it was considered to be
owned by the attacker regardless of whether that Cust,, was
detected in the future or not, and that data was added to the
pool of data that had been successfully retrieved by the col-
laborating Traitor Cust,,.

Because the threshold of 90% of SAs and SSAs turned
traitor before Phase 2 of the simulation began, a unique situ-
ation presented itself. In most cases, the percentage of Traitor
SAs and SSAs in IDACS would drop quickly after the start of
Phase 2 of the simulation (FIG. 59), similar to the results in
with a 60% threshold. However, with a 90% threshold, in
about 1 in 10 simulation runs, new Traitor SAs and SSAs
would be turned more quickly than they were detected and
quarantined at the beginning of Phase 2. If 100% of the SAs
and SSAs in IDACS were turned Traitor, there were no loyal
SAs or SSAs remaining to detect, identify, and quarantine the
Traitors. In that case, IDACS was completely controlled by
the attacker, and the IDACS defenses were completely nulli-
fied. In this discussion, a simulation that results in 100%
Traitor SAs and SSAs is termed a “Runaway Botnet”, while a
simulation that reduces the percentage of Traitor SAs and
SSAs over time is referred to as a “Contained Botnet™.

FIG. 59 shows a comparison of the results of IDACS Net-
work loyalty for a given Contained Network simulation run
and a given Runaway Network simulation run.

It should be noted that Runaway Botnet simulations
occurred in only 1 out of 10 simulation runs with an SA/SSA
Traitor threshold of 90%; Runaway Botnets were not
observed in simulations with a threshold of 80% or less.
Therefore, a Runaway Botnet represents a highly unlikely,
but very catastrophic situation. For the sake of completeness,
the results for Runaway Botnet simulations are included in
discussions herein.
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The results of this simulation were analyzed to discover the
effectiveness of the protection provided by the Segmented
File Tree Directory against illegal access of the Client-side
encrypted data.

FIG. 60 shows the percentage of the File Directory Tree
stolen by the attacker averaged across 9 Contained Botnet
simulation runs, compared to the same data for a single Run-
away Botnet simulation. For the Contained Botnet, a small
percentage of the File Directory Tree is initially retrieved,
riding on the initial high percentage of Traitor SAs and SSAs
(FIG. 59). However, as Traitor SAs and SSAs are identified
and quarantined, more Traitor Cust,, are also identified and
quarantined; as their individually encrypted File Directory
Trees are re-encrypted, those previously retrieved Folders are
lost, and the percentage drops. Eventually, when fewer
access-DB-attacks are being made and even fewer are suc-
cessful, due to a low percentage of Traitor SAs and SSAs in
IDACS (compare to FIG. 41 and FIG. 43), the percentage of
the File Directory Tree that is retrieved will drop to zero. This
simulation demonstrates that even under extremely adverse
situations, IDACS will contain and eliminate the results of an
initial burst of successful illegal IDACS database accesses.
However, FIG. 60 also demonstrates that in the rare, cata-
strophic situation of a Runaway Botnet, the Traitor Cust
become functionally equal to Loyal Cust,,, and the entire File
Directory Tree can be retrieved with sufficient time.

FIG. 61 and FIG. 62 show the percentage of the total Data
File Segments in IDACS that were successfully stolen by
Contained Botnets and Runaway Botnets. For a Contained
Botnet (which is the more realistic situation), the Traitor
Cust,, meet with some initial success in retrieving Data File
Segments (compare to the percentage of the retrieved Data
File Tree in FIG. 60). However, after IDACS becomes more
successful at blocking access-DB-attacks, no more Data File
Fragments are retrieved. Because a Data File Fragment, once
stolen, is permanently stolen (re-encryption of a Data File
Tree does not nullify the theft of a given Data File Fragment),
quarantine of Traitor Cust,, does not reduce the percentage of
Data File Segments stolen; however, IDACS is able to limit
the damage to an average of about 0.22%, or slightly less than
one complete Data File Segment. Once again, however, if an
attacker manages to accomplish a Runaway Botnet (the rare,
less realistic situation), there is a virtual open door for the
Traitor Cust,, to retrieve all of the Data File Segments, limited
only by time.

One of the advantages ofthe IDACS Segmented File Direc-
tory Tree approach is that it allows previous illegal IDACS
datacenter accesses to be detected. When a Traitor Cust,, is
detected, the IDACS forensics engine reports to the System
Administrator that all Data File Segments previously
retrieved by that Cust,, have been stolen. It is very useful, in
the aftermath of a network breach, to know where data leak-
ages occurred, and what data was leaked.

FIG. 63 and FIG. 64 show when File Data Segments were
retrieved during the simulation, and when they were detected
as having been stolen. FIG. 63 shows that File Data Segments
stolen during the Contained Botnet simulation were detected
as stolen soon after the theft. This demonstrates the strength
of data leakage capabilities of IDACS. However, when the
Runaway Botnet gains control of all of the SAs and SSAs in
IDACS (FIG. 64), none of the stolen data is detected as such.

When a Traitor Cust,, is detected to be a Traitor, this allows
IDACS to hold that Cust,, accountable for stealing files.
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FIG. 65 shows the success rate for identifying every Cust,,
that was ever turned Traitor for Contained and Runaway
Botnet simulations. In the common real-world case (Con-
tained Botnet), IDACS is able to identify and quarantine a
large percentage of the Traitor Cust,,, only failing to identify
them once the percentage of Traitor SAs and SSAs drops
below the threshold below which access-DB-attacks s are no
longer launched (compare to FIG. 59). Thus, IDACS provides
strong capabilities for identifying and holding accountable
Byzantine agents in the system. For the rare case (Runaway
Botnet), several Traitor Cust,, are identified, but once 100%
ofthe SAs and SSAs in IDACS are turned Traitor, there are no
new detections of Traitor Cust,.

FIG. 66 shows an exemplary IDACS implementation setup
that has been tested. However, the IDACS network can be
scaled to any size desired (though preferably, 1 SSA, 2 SAs,
and 1 DB minimum are provided). The space separation of the
Client Device (Client,,) and User Badge (Badge.) is simu-
lated by storing their respective cryptographic seeds on dif-
ferent Java Virtual Machines.

FIG. 67 (a) through (d) show exemplary Command Line
Interface (CLI) programs implemented in Java, which can be
used for various software components, such as all IDACS
Network elements (SAs, SSAs, and Databases) and the User
Badge (Badge,).

The Client Device (Client,) may be implemented in a
number of ways. FIG. 69 (e), as one example, shows that it
may be implemented as a CLI program. This Client Device
implementation performs simple Read and Write operations
to store and retrieve blocks of data on the IDACS Database;
the purpose of this implementation is to test the IDACS reac-
tion to incorrectly formed PIDs (PID,) and also compromise
of the Client Device (Client,), User Badge (Badge.), User
Password (Pwd,), or Badge PIN (PIN;,).

FIG. 67 (f) shows a second exemplary Client Device imple-
mentation, in the form of an app that runs on a BlackBerry
9800 simulator available from RIM. This app encrypts a file
and stores Xslices and Xbits on the DB in a distributed man-
ner.

In addition to being scalable, this implementation of
IDACS uses a network communications protocol that
achieves reliable delivery over UDP. Given the particulars of
the IDACS algorithm and the per-message overhead OTP,,
PID,,, and XV, it should be noted that combining IDACS with
TCP might present inefficiencies. It may be more efficient to
build a proprietary IDACS protocol on top of UDP. Therefore,
the current implementation of IDACS is built on top of UDP;
to compensate for the reliable delivery problem, IDACS con-
tains built-in reliable delivery capabilities based on the con-
cept of TCP SACKs. Using this method, IDACS is able to
reliably transfer large numbers of packets.

FIG. 68 shows a demonstration of the real-time digital
forensics capabilities of this exemplary IDACS implementa-
tion. FIG. 68 (a) shows a simulated attacker attempts a Data
Write operation, having stolen the User Password and the
Client Device, but not the User Badge (the Badge PIN is
bundled with the User Badge in this particular implementa-
tion). FIG. 68 (b) shows that due to the missing cryptographic
seeds residing on the User Badge, several of the PIDs (PID,)
cannot be formed correctly; these incorrect PIDs are detected
by an SA, and the attack is flagged. FIG. 68 (¢) shows that
based on the cryptographic seed space separation and PID
formation in this particular IDACS implementation, the digi-
tal forensics suite is able to determine correctly that the User
Password and Client device were stolen or cloned.
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The BlackBerry application implements the concepts of
space/time-separation and also Xbits and Xslices to protect
encrypted data. When the BlackBerry application is run, it is
given a file to encrypt. The application begins with a few
randomly-generated cryptographic seeds that are the basis for
all following actions. These cryptographic seeds are used to
seed a pseudo-random process which divides the file data into
pseudo-random-sized blocks and encrypts each block with a
unique pseudo-random AES key. Next, the resulting cipher-
text is divided into pseudo-random-sized blocks, and a certain
percentage of those blocks are removed as Xslices. Xbits are
also pseudo-randomly removed from these cryptographic
seeds (using the User Password as a seed for the pseudo-
randomness). The post-Xslice ciphertext is then divided into
1 KB blocks, which are stored in alternating data files (FIG.
68 (a)) that have random file names and random file exten-
sions (FIG. 68 (b)). A “pointer” file is formed which contains
the names of the data files as well as the cryptographic seeds
(minus the Xbits). All of this information is mixed randomly
with garbage data, encrypted with the User Password, and
stored in the “pointer” file (FIG. 68 (c)). The Xslices and
Xbits are sent to IDACS to be stored on a random database.
Only the SSAs are able to link the User with the stored Xslices
and Xbits; the Databases store no information regarding the
type of the data or the owner of this data. The Database stores
all data simply as data; there is no indication as to whether the
data is Xslices, Xbits, or another type of data. In this way, an
Attacker would be forced to compromise both an SSA and the
correct Database to recover the Xbits or Xslices and relate
them to the correct Client Device and User. To decrypt the file,
the User must possess the Client Device and provide the
correct User Password to extract and retrieve all the relevant
data to complete reassembly and decryption. In this imple-
mentation, the space separation of the storage of authentica-
tion items is simulated by storing Client and User Badge data
in different text files; however, due to the difficulty of inte-
grating a stand-alone User Badge program with the Black-
Berry simulator, the User Badge interface and the User Badge
PIN are only used in conjunction with the CLI Client, not the
BlackBerry application.

FIG. 69 shows a BlackBerry implementation of IDACS
encryption and distributed storage. FIG. 69(a) shows file
ciphertext with Xslices removed and (as shown in FIG. 69(5))
divided and stored in multiple data files. FIG. 69(c) shows
names of data files encrypted and stored in a pointer file. FIG.
69(d) shows Xslices and Xbits are stored on IDACS Database
as pure data; no information saved on Database indicating the
identity of this data. FIG. 69(e) shows correctly reassembling
all distributed and mutated pieces results in correct file
decryption. FIG. 69(f) shows distributed storage between Cli-
ent and User Badge simulated using separate text files.

As explained above, disclosed embodiments may provide
an illustrative integrated security system IDACS that utilizes
the space-time separated and jointly evolving relationship to
provide multiple layers of constantly-changing barriers that
are mathematically infeasible for attackers to predict. The
implementation of these ideas can successfully detect and
defeat different types of network attacks, including zero-day
attacks. Table 12 details several common network attacks that
systems, components, and methodologies in accordance with
the present disclosure can address. Mathematical analysis
demonstrates that it is generally infeasible to recreate the
IDACS authentication protocol, and simulations also rein-
force the strength of these space-time relationships. Table 12
lists the types of network attacks defeated by IDACS
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Attack defeated Reason

Zero-day attack

Network access control is mathematically defined by a space-time

separated and jointly evolving relationship; zero-day attacks which
can compromise hosts cannot forge such a relationship when
accessing protected data; furthermore, the zero-day attack method

can be captured and analyzed

Denial-of Service
(DoS) attack
Replay attack

discarded

packet sequence number
Client-side device loss

Quick stateless OTP checking allows attack packets to be quickly
Time-evolution means OTPs and PIDs are true one-use items tied to

Cryptographic seeds for calculating authentication parameters are

space-separated; loss of one or more devices does not allow attacker
to reconstruct the space-time separated and evolving relationship

SA and/or SSA Mutual support in authentication chain detects a hijacked SA or SSA
hijacking
SA and/or SSA Space-time separation and evolution of cryptographic seeds means

memory leakage

seeds
System downtime
while waiting for

network healing downtime by using available system migration

memory leakage at one or more SAs does not leak all OTP/PID

Space-time evolving determination of network-side authentication
chain path allows real-time network healing with no network

In addition to detecting and preventing attacks, systems,
components, and methodologies in accordance with the
present disclosure provide real-time forensics capabilities,
allowing traitorous network actors to be identified quickly
and accurately. Simulations demonstrate that forensics are
efficient and effective. Also, systems, components, and meth-
odologies in accordance with the present disclosure use the
space-time separated and jointly-evolving relationship to
protect at-rest mutated encrypted data. Space-time-changing
Xbits and Xslices, providing mutation to ciphertext, stored
across multiple locations and data segmentation provide
greater security for encrypted data. Once again, mathematical
analysis demonstrates the theoretical strength of this system,
and simulation provides a more concrete expression of this
security.

Thus, systems, components, and methodologies in accor-
dance with the present disclosure implements the space-time
separated and jointly-evolving relationship across multiple
aspects of the system to provide a complete end-to-end net-
work and data protection system that has strong mathematical
properties.

As explained above, the problem of finding the highest sum
W(e) path is defined as the Maximum Weight Directed Path of
Specified Length (MWDPSL) problem; this problem will
now be proven NP-complete. The process of proving a given
decision problem C to be NP-complete has two operations: 1)
Show that C is in NP; 2) Show that every problem in NP is
reducible to C in polynomial time.

The first operation can be shown by demonstrating that a
candidate solution to C can be checked for correctness in
polynomial (or better) time. The second operation can be
shown by demonstrating that any one known NP-complete
problem B is reducible to C. If one NP-complete problem B
can be reduced to C, then all other NP-complete problems can
be reduced to C. A problem B is reducible to problem C if
there is a polynomial-time, many-one reduction from B to C;
that is, there is a reduction that can transform any instance of
B into an instance of C. Any algorithm that can be used to
solve all instances of problem C can be used to solve all
instances of problem B.

The process of proving that the MWPSL and MWDPSL
problems (C) are NP-complete begins with a proven NP-
complete problem, the Hamiltonian Path problem (B). FIG.
70 shows an NP-complete reduction path to visualize a proof
showing properties of exemplary IDACS networks. Particu-

30

40

45

50

55

larly, FIG. 70 shows the reduction path between the Hamil-
tonian Path problem (B) and the MWPSL and MWDPSL (C)
problems is shown in.

As explained herein, each of the reductions is composed of
a series of indicated operations. Subsequently, the MWPSL
and MWDPSL (C) problems are proven to be NP-complete.

Starting Point: The Hamiltonian Path is NP-Complete

Hamiltonian Path: Given an undirected graph G=(V , E)
where V' isaset of vertices {v,, v, ... } and every e€E is an
unordered set of vertices {v,, v,} called edges. Does G con-
tain a Hamiltonian path, whichis a sequence <v, v,, ..., v,>
of distinct vertices from V' such that {v,, v,,, } €E for 1=i<n
and every member of V' appears once and only once in the
sequence?

The Hamiltonian Path problem has been proven NP-com-
plete.

Operation 1: Show that the Maximum Weight Hamiltonian
Path problem is NP-complete.

Maximum Weight Hamiltonian Path: Given an undirected
graph G=(V', E) where every eCE is an unordered set of
vertices {v,, v, } called edges and has a weight W(e)EQ*, and
there is a number REQ". Is there a Hamiltonian path <v,,
Vi eees Vi o oo, V> in G wherem=IV | such that 3 "IW(v,
vi1)=R, where {v,, V,,, }EE?

Operation 1.1: Show that the Maximum Weight Hamilto-
nian Path is in NP.

A candidate solution to this problem can be checked by
tracing the path, verifying that each vertex is touched once
and only once, and summing the weights of the edges in the
path and checking the final sum. The candidate solution is
checked in linear time.

Operation 1.2: Show that the Hamiltonian Path problem is
reducible to the Maximum Weight Hamiltonian Path problem
in polynomial time.

The Hamiltonian Path problem is a special case of the
Maximum Weight Hamiltonian Path problem, so the first can
be reduced to the second. Create an instance of the Maximum
Weight Hamiltonian Path problem. Setall W(e)=1 forall e€E
and set R=(1V" [-1). This is now an instance of the Hamilto-
nian Path problem, and the reduction is accomplished in
linear time.

Result: The Maximum Weight Hamiltonian Path problem
is NP-complete.

Operation 2: Show that the Maximum Weight Path of
Specified Length (MWPSL) problem is NP-complete.
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Maximum Weight Path of Specified Length (MWPSL):
Given an undirected graph G=(V', E) where every e€E is an
unordered set of vertices {v,, v,} called edges and has a
weight W(e)EQ", there is a number REQ™ and an integer N<|
V' |.Is there a path P=<v,,v,, ..., v, ..., V,>in G such that
any vEV appears at most once in P and X, V'W(v,
v,,)=zR, where {v, v, }EE?

Operation 2.1: Show that the MWPSL Problem is in NP.

A candidate solution that connects some or all of the ver-
tices can be checked by tracing the path, verifying each vertex
in the path is touched at most once, verifying that there are N
vertices in the path, and summing the path edge weights and
comparing the sum to R. This candidate solution is checked in
linear time.

Operation 2.2: Show that the Maximum Weight Hamilto-
nian Path problem is reducible to the MWPSL problem.

The Maximum Weight Hamiltonian Path problem is a spe-
cial case of the MWPSL problem, so the first can be reduced
to the second. Create an instance of the MWPSL problem and
set N=| V' |. This is now an instance of the Maximum Weight
Hamiltonian Path problem; this reduction is accomplished in
linear time.

Result: The Maximum Weight Path of Specified Length
(MWPSL) problem is NP-complete.

Operation 3: Show that the Maximum Weight Directed
Path of Specified Length (MWDPSL) problem is NP-com-
plete.

Maximum Weight Directed Path of Specified Length
(MWDPSL): Given a directed graph G=(V, E) where every
eCE is an ordered set of vertices {v,, v,} called arcs and has
a weight W(e)&Q", there is a number REQ™ and an integer
N=|V |. Is there a path P=<v,, v,, ..., v,>in G such that any
VvEV appears at most once in P and =, *'W(v,, v,, )=R,
where {v,,V,,,}EE?

Operation 3.1: Show that the MWDPSL Problem is in NP.

A candidate solution that connects some or all of the ver-
tices can be checked by tracing the path, verifying each vertex
in the path is touched at most once, verifying that there are N
vertices in the path, and summing the path edge weights and
comparing the sum to R. This candidate solution is checked in
linear time.

Operation 3.2: Show that the MWPSL Problem is Reduc-
ible to the MWDPSL problem.

The MWPSL problem is a special case of the MWDPSL
problem, so the first can be reduced to the second. Create an
instance of the MWDPSL problem corresponding to an
instance of the MWPSL problem where every e€E with a
given W(e) in the MWPSL problem is replaced by a pair of
opposite-direction directed e€E in the MWDPSL problem,
both with the same W(e) as in the MWPSL problem. This now
equates to an instance of the MWPSL problem; this reduction
is accomplished in linear time.

Result: The Maximum Weight Directed Path of Specified
Length (MWDPSL) problem is NP-complete.

The MWPSL and MWDPSL problems represent a reas-
sembly-due-to-space-separation problem at a given instant in
time. Thus, the space separation of IDACS provides the NP-
completeness to the systems. However, due to the joint time-
evolution of IDACS, the problem evolves into a completely
new MWPSL or MWDPSL problem each time the system
states change (which can occur every few seconds). There-
fore, the time-evolution greatly increases the complexity of
the problem.

In accordance with disclosed embodiments, systems, com-
ponents, and methodologies also provide a security scheme
that incorporates the cloud and mobile devices possessed by
auser to give the user the required data confidentiality, integ-
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rity and user authentication at substantial security strength,
e.g., more than 768-bit security strength, and an NP-complete
problem without sacrificing performance. This is possible
due to the randomness of wrapping, splitting, encrypting files,
and storing the different pieces in different locations on the
PC, mobile devices, and in the cloud.

More particularly, systems, components, and methodolo-
gies in accordance with the present disclosure provide secu-
rity and authentication of encrypting files with more than a
password and a simple location. They overcome problems
such as password cracking, cloud storage, zero-day malware,
Trojans, phishing, and information leakage that are draw-
backs to alternative implementations. Generally, one way the
disclosed systems, components, and methodologies solves
these problems is by not only using “what a person knows”,
like a password, but also “what a person has”. The present
disclosure employs cloud storage and mobile devices
together to provide the benefits and improvements described
above.

The systems, components, and methodologies in accor-
dance with the present disclosure provide authentication by
authenticating the user with multiple devices and passwords.
Also, by splitting and storing the encrypted data on multiple
devices such as a server, an Android mobile device, a PC, and
cloud servers, the user will have a higher degree of integrity
and confidentiality because the attacker will have to have
access to all encrypted pieces, devices, and passwords.

Factors behind the systems and methodologies described
herein include: what the user knows, what the user owns,
where the encrypted pieces are, and encryption, such as by
way of example AES-GCM encryption.

FIG. 71 shows an overview of factors incorporated into a
network security design, including what the user knows, what
the user owns, where the encrypted pieces are, and encryp-
tion. What the user knows and owns gives authentication
while the random locations of the splits and AES-GCM gives
integrity and confidentiality. In this design, the user will know
a password and own an Android mobile device, a PC, and a
server.

With the user’s password and devices, a key may be con-
structed as input to the AES-GCM encryption and the
encrypted output is split up and randomly distributed among
the devices including the cloud service DropBox. The loca-
tion of these splits is stored in a list or map that will also be
protected.

FIG. 72 shows a visual representation of an exemplary
methodology by which a user can protect a folder through
splitting. According to this illustrative embodiment, to pro-
tecta folder, the user first inputs a password to the PC program
and another password (which can be the same as the former)
into the Android mobile device. TCP is used as the commu-
nication protocol between the PC, device, and server all con-
nected via a LAN. A salt is then randomly generated and is
used with the password to create a key. The folder that the user
wants to protect is zipped and encrypted with AES-GCM
256-bit and broken into pieces, e.g., 4-9 random pieces called
“splits”. The splits are then randomly stored on the devices
and DropBox while their locations are stored on the map. The
map is then protected itself so that an attacker cannot find the
locations of the encrypted splits. To unprotect, the passwords
may be entered and the map, salt, and key may be recreated so
that the splits can be merged, decrypted, and recovered.

According to one exemplary implementation, various tools
may be used including: an Android 2.2-4.2 device, the
Android SDK, a PC, the DropBox API, JAVA, Eclipse JUNO,
and the RSA JAVA Share package for GCM. Software using
JAVA was created for the PC, mobile device, and server. The
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software design may be broken into three sections, the salt/
key generation, protection (encryption, splitting, and map-
ping), and unprotection (gathering, merging, and decryption).

FIG. 73 shows the different modules (which can be imple-
mented in hardware or software) that can be used to design
this security scheme. Table 13 shows exemplary platforms
that can use the disclosed software.

TABLE 13

PC Program (JAVA)  Mobile Device Server (JAVA) Cloud

Windows (Used) Any Device with  Windows (Used) DropBox API

Linux Android 2.2-4.2 Linux Google Drive
Mac i0S Mac MS SkyDrive
BlackBerry iCloud

Windows Phone

If a user wants to protect a folder, a 256-bit key may be
created for the AES-GCM encryption. This key may be made
from a randomly generated 256-bit salt seeded with the time
stamp of the PC. The salt is concatenated with the PC pass-
word and hashed using SHA-256 n-number of times.

FIG. 74 visually depicts the process of generating a key.
Since the salt is part of key creation, it may be protected from
advisories. This is done by splitting the salt into “sbits” and
the “smain.” The sbits may be random bits removed from the
salt of 3-12 bits long. The random positions and lengths of the
sbits may be derived from an initial random number seeded
with the time-stamp. The remaining part of the salt left after
n-rounds may be the smain. The outputs of the process are the
sbits, smain, and an initial random number (rand#1). FIG. 75
shows the function of a SaltGen function. FIG. 76 depicts the
process of protecting a salt.

FIG. 77 shows an overview of the protection process. After
the 256-bit AES-GCM key is created, the selected folder is
zipped and encrypted; the encrypted folder is called the
“bulk”. The bulk is then randomly split into pieces, e.g., 4-9
pieces, called “splits”. Each split is again encrypted with keys
derived from the password. The outputs after encryption are
the splits and a random number that was created to split the
bulk. The splits are then randomly distributed among the PC,
server, mobile device, and DropBox. To protect the salt, the
smain, sbits, and the random number (rand#1) salt are con-
catenated, encrypted, split, and distributed in a similar fash-
ion as the folder.

FIG. 78 depicts a map that is created with the location of
each split so recovery is possible.

Details regarding encryption are now provided. AES with
GCM (Galois/Counter Mode) is an advantageous option
because of its efficiency, performance, and built-in authenti-
cation. Its high throughput makes it favorable for high-speed
data transfer. GCM can take full advantage of instruction
pipelining in contrast to alternatives, such as Counter Block
Chaining (CBC) which incurs pipeline stalls. GCM improves
on counter mode (CTR) by using finite field to add authenti-
cation to the encryption process. GCM belongs to a class of
cipher modes called Authenticated Encrypted with Associ-
ated Data (AEAD). The RSA BSAFE Share library is used
since the JAVA cipher class has not implemented GCM yet.
However, it should be understood that the scope of the present
disclosure is not limited solely to AES with GCM.

After encryption the bulk is split randomly into pieces, e.g.,
4-9 pieces. This may be done with a randomly generated
number of 512-bits created using the JAVA SecureRandom
class. Each split is then encrypted with keys generated with
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the password and salt. The smain, sbits, and random number
from the salt generation are concatenated, encrypted, and
split as well.

FIGS. 79-80 show a process by which the encrypted splits,
once created, are randomly sent to different devices, and the
location of each device is stored in a map.

FIG. 81 shows a process by which the map is protected by
systemically storing and encrypting parts of the map among
the devices. First, the PC encrypts the map and sends one-half
to the mobile device, and the other half to the server. Sec-
ondly, the mobile device and server encrypts and sends their
halves to the other two devices. Lastly, the all of the pieces are
encrypted by their respective devices and stored. The PC
stores its encrypted pieces on DropBox. The pieces of the
index file are distributed in such a way that if 2 devices are
compromised, the map will still be protected.

FIG. 82 shows how the map is reconstructed. When recov-
ering data, the user inputs the passwords, and the map is
reconstructed from the encrypted pieces among the devices.
The map reconstruction is simply the reverse of the map
protection process; after the user inputs the passwords in the
mobile device and PC, then each device will decrypt and send
its part to the other devices. From the map, the PC is able to
request and obtain the splits from the different locations. The
salt is first recreated from the smain, sbits, and the initial
random number. Once the salt is reconstructed, the AES-
GCM key is remade with the password and salt.

FIG. 83 shows how the key is used to decrypt the informa-
tion after the splits are rejoined.

FIG. 84 shows a network diagram of the devices in accor-
dance with an exemplary network setup used to test the per-
formance of exemplary implementations in accordance with
the present disclosure. To test the performance of the protec-
tion and unprotection process, three different sizes of data
was protected and unprotected. The runs were done using an
internet link of 30 Mbps downlink and 4 Mbps uplink with the
wireless LAN was at 65 Mbps.

The tests were run with total file sizes 0f 36 KB, 1.08 MB,
and 10.8 MB that contain various amounts of files and folders
(Table 14 and 15). The average total running time and the
average AES-GCM/splitting time were calculated. However,
as the files became bigger, the total average time of the pro-
tection became nearly 28 seconds. This was due to the upload-
ing of the larger splits to DropBox which is limited by the
upload speed of the internet connection. To combat this prob-
lem, a second series of tests was done to see the effect of
limiting the DropBox upload size to just 10 KB. This
decreased the running time by nearly 300%. Nevertheless, the
AES-GCM encryption and splitting of the group of files was
very fast, even for larger file sizes.

TABLE 14

Protection Times—This was not done with 36 KB
because 36 KB/4 = 9 KB max split size

Avg. Avg.
Avg. Rumning  GCM
Running  Timewith  and
Total Number Time 10 KB max Splitting
Size of of (sec) splitsize to  Time
Files Files Folders  (Protecting) DropBox  (sec)
36 KB 9 6 4.765 s — 01343 s
1.08 MB 15 3 8.539 s 5.460s .08548 s
10.8 MB 150 40 27975 s 8.728s .79765s
(file
transmission
time in
majority)
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TABLE 15

Unprotection Times

82

When it comes to protecting the passwords, the password
to the mobile device may be hashed and saved on the mobile
device while the password to the PC is not saved at all. One

Avg. Avg, , feason for not saving the password on the PC is because if the
Ave. Rumning - GCM same password is not entered when unprotecting as when
Running  Timewith  and R . X .
Total Number Time 10 KB max Splitting protecting, the unprotecting process will fail due to the GCM
Size of of (sec)  splitsizeto  Time built-in authentication with the improper key that would be
Files Files Folders (Protecting) DropBox  (sec) . . . .
created. Since the mobile device uses AES-CBC, built-in
36 KB 9 6 41396 — 00923s 10 gythentication is not available and the password must be
1.08 MB 15 3 559645 4.117s .09017s : . .
10.8 MB 150 40 11.813 s 8.533s .70084 saved. Since a password is used for both the PC and mobile
device, two different passwords can be used. The password+
With the data from the original timed runs, it was estimated ~ salt combination makes dictionary attacks unreliable against
that the speed of the encryption: 15 the PC because the salt is protected by encryption and split-
~FileSize*3.80764x10-8 sec)/1 Byte. ting.
While the speed of the decryption is: A strength of the disclosed systems is the spreading of
. . _8 . . . . .
z(FlleSIZe*3~4081.4?<10 sec)/1 Byt& encrypted splits, smain, and sbits among various devices and
The speeds Zf splitting and merging were also calculated 2 locations. This addresses the situation that if some splits are
at. ~(FileSize 3'_659 64x10-8  sec)/l Byte and  ~(File- found either by eavesdropping or device compromise, no
Size*3.47196x107° sec)/1 Byte, respectively. . .
. . plaintext data can be recovered. All of the splits from all
With the speed and performance of AES-GCM, encrypting .
: . _8 locations are used to recover data.
and decrypting large files is not a problem on orders of 10 .
seconds/byte. The same goes for splitting and merging files. Tables l? and 17 show the different strengths of each pa.rt
An objective of the systems, components, and methodolo- 2> ofthesecurity scheme. The total cryptographic key strength is
gies in accordance with the present disclosure is to provide ~ 768-bits because without the 768-bit protected map, then the
high security to the user’s information without sacrificing splits cannot be located.
performance. By having not only a password and being able FIG. 85 shows how the salt, folder, and map protection
to distribute the encrypted data among various devices and 5, strengths are found. There are two 256-bit keys used for the
locations, retrieving protected information not only depends salt and map protection and three 256-bit keys used for the
on “what the user knows”, but also “what the user has”. map protection (one from each device).
TABLE 16
Vulnerabilities vs. Countermeasures
Possible
Vulnerabilities Countermeasures
Password Need to brute force two passwords (1 for the PC and other for
Brute Force mobile device) and strong passwords and the salt concatenation
would make this task unfeasible
AES-GCM Key 256-bit key gives 22 possibilities which is unreachable with today’s
Brute Force and near future computers

Some Splits Found

Mobile Device, PC, or
Server Compromised
All devices

Need ALL splits to unprotect and no useful data can be recovered.
NP-complete problem to solve due to the random number of splits
and sizes of splits

Still need ALL devices to unprotect data since each device has
information to unprotect data

No countermeasures for complete takeover

compromised and
passwords leaked

TABLE 17

Strength of Aspects of the Project

Password

of 10- Folder Total
ASCII AES- Protection Crypto-
case- GCM (AES graphic
sensitive Key Salt  Key Map  Strength
chars Salt Length Splits v Protection Wrap) Protection of Key
Log,(951%)  256-bits 256-bits NP- 96-bits  512-bits  512-bits 768-bits  768-bits
65-bits complete

problem
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An explanation is now provided of an exemplary usage
scenario of a system in accordance with the present disclo-
sure. FIG. 86 shows that three devices, a personal computer,
a server, and a mobile Android® device, and their corre-
sponding programs are started. For the demonstration, the
server program is being run on the personal computer; how-
ever, since JAVA is used, this can be easily run on any plat-
form that supports JAVA.

According to this exemplary usage scenario, the folder that
the user wants to protect is selected and a password is entered.
After protecting, the encrypted data is split and stored in the
different places. The “kf*.txt” files are the splits of the
encrypted data.

FIG. 87 shows the split files among its different locations.
The “Con* txt” files are the smain, sbits, and initial random
number that are concatenated, encrypted, and split. The
“*Index.txt” files are the parts of the protected map. Unpro-
tecting is just putting the folder name and password and
pressing unprotect. The original folders and files may be
restored and the original data can be retrieved by the user.

The performance versus security is excellent for the
encryption, decryption, splitting, and merging. The perfor-
mance can be improved for large files if the upload speed to
the cloud is increased, though this can be achieved with better
upload speed or a design change in which the split size to the
cloud is limited; by doing this, the security is not hampered
what so ever. The AES-GCM makes the 256-bit encryption
and decryption process very efficient, even for large files
sizes. With the multiple encryptions, the overall encryption
strength of this scheme is 768-bits, which is unbreakable by
technology today and in the near future. Security can be
improved without hindering performance if the key size is
increased and strong passwords are enforced.

The systems, components, and methodologies disclosed
herein provide technical solutions to problems described ear-
lier. Encrypted files being stored in multiple places protect
against zero-day malware and Trojans on the PC; also, pro-
tection against insecure cloud storage is provided. Since all
devices and the password plus protected salts are needed for
unprotection, this will protect against password leakage,
brute forcing, phishing against the user, and lost devices.
Also, information leakage (via insecure networks or device
compromise) is protected because if a few splits are found, no
information about the plaintext can be recovered. These
design properties makes this implementation very secure
against outside attackers.

The systems, components, and methodologies disclosed
herein make data protection more secure by providing greatly
improved security and having an additional form of authen-
tication and file protection by fully utilizing the available
mobile devices possessed by a user—in this exemplary illus-
tration, an Android mobile device. The high security strength
and spreading parts of the encrypted file among multiple
devices and cloud makes this scheme extremely difficult to
break. An attacker must not only need to attack the password
or keys, but also needs to possess all of the pieces from all
locations. According to the above-described exemplary illus-
tration, the scheme provides at least 768-bit security with an
NP problem without sacrificing performance.

FIG. 88 shows other features contemplated within the
scope of this disclosure, including more authentication meth-
ods such as biometrics or smart card, encrypted data stored on
multiple cloud servers, and a mobile device to have the data
available to users anywhere at any time. This would give
better flexibility and not have a dependency on a single PC.
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Different limits on split sizes being uploaded to cloud servers
or larger upload speeds would increase the network perfor-
mance of the system as well.

In accordance with at least one disclosed embodiment,
systems, components, and methodologies may provide a
TPM-enhanced cloud-based file protection system. Such sys-
tems, components, and methodologies address the need for
better cloud computing system security. According to the
present disclosure, file distribution design can be introduced
into the information protection system to add another layer of
security. Distributed file pieces could obfuscate and defeat the
hackers from recovering the whole file.

The present disclosure addresses shortcomings of alterna-
tives, including alternatives that rely solely on software appli-
cations, by introducing Trusted Computing design which uti-
lizes the Trusted Platform Module (TPM) into this design.
TPM is a security chip that can create and store cryptographic
keys, generate random numbers, and so on. In one aspect in
accordance with the present disclosure, TPM’s security fea-
tures are deliberately designed as part of the system imple-
mentations disclosed herein. TPM is first used to bind cryp-
tographic key to provide root of trust. Then to provide support
for cloud computing design, TPM provides identity attesta-
tion for client.

In accordance with illustrative embodiments, the file pro-
tection system, consisting of a server, a client and an Android
mobile device, provides 5 layers security. First, in accordance
with disclosed embodiments, the logon scheme is protected
by obfuscated inputs on client and Android and is authenti-
cated on server. In this exemplary implementation, no one
device has a password or password hash, and as such, this
scheme can effectively defeat the key logger and screenshot
capturer. Second, in accordance with disclosed embodiments,
AES-GCM scheme is used for file encryption and decryption.
Third, in accordance with disclosed embodiments, encrypted
file splitting and hiding scheme can be implemented in the
cloud storage to avoid side channel attacks to encrypted files.
Fourth, in accordance with disclosed embodiments, TPM is
used to create 2048 bits RSA binding key to protect the
encrypting key for the index file, which is the start point of the
file unprotection. Fifth, in accordance with disclosed embodi-
ments, the TPM is used to create 2048 bits RSA Attestation
Identity Key to provide identity authentication for the client.
Finally, the encrypted file and encrypted index file are dis-
tributed to server, Android and client. Only the authorized
client with the original TPM which carries the RSA signing
key and binding key can retrieve distributed file pieces and
finally unprotect them. Possession of all of the devices cannot
recover the information.

FIG. 89 shows an exemplary cloud storage system for use
with personal devices. Trusted Computing utilizing TPM
offers advantages not present in alternative network security
implementations. For example, it can provide trustable cryp-
tographic protection and identity authentication in cloud
computing. Certain alternatives, including firewall, Intrusion
Detect System (IDS) and anti-virus, are passive defense tech-
nologies. The systems, components, and methodologies
described herein use trusted computing, which is an active
defense technology.

Traditionally, for the security software that resides only on
the software process, the cryptographic keys has to be stored
plainly on the hard drive which means that running that whole
security process in software is like leaving a spare front door
key somewhere in the yard—one is relying on being able to
think of a key-sized hiding place that a burglar won’t find.
That is the unavoidable weak point for software security.
Incorporating TPM into the crypto system can finally resolve



US 9,208,335 B2

85

this trouble and escalate the file protection system to the
hardware level. Trusted Platform Module can implement
security features and can be used as a reference point to
provide root of trust for cryptographic processes. Based on
the key management infrastructure and root of trust features,
TPM provides cryptographic ability to secure critical data
and act as a reference point for the information protection
which solves the weakness of solely-software cryptographic
processing.

The cloud storage of information presents additional secu-
rity concerns, including the identity proof of different parties.
To ensure full access to the cloud storage information pieces,
each party of the system should trust others to ensure the
security of the information. Thus, the identity attestation abil-
ity of TPM provides advantages over alternative implemen-
tations. Certain alternative implementations use a Role Based
Access Control Model as the security binding for the cloud
storage. In systems, methods, and components in accordance
with the present disclosure, the Identity Attestation Key
inside TPM, according to the features of personal information
protection, which is strongly protected by Storage Root Key,
is generated and used as the identity proof of the specific
TPM, and this will ensure the safety of the cloud storage data.
Because the TCP is based on relatively independent hardware
modules, the disclosed systems do not require significant
CPU resources, and can improve the performance of crypto-
graphic computation processing.

For the information security system, password protection
is another important consideration. Passwords are often the
primary source for protection. But passwords may be vulner-
able for two reasons. The traditional input methods of pass-
words are so weak that it they may be easily captured by akey
logger or screen capturer. Likewise, many passwords chosen
by people can be cracked by dictionary attacks or social
engineering.

There are different alternative models designed for pass-
word protection. Many rely on the complicated mathematical
processing of user passwords and include biotic features and
distributed computing features. In accordance with the
present disclosure, a specific server, the client PC, and the
Android Device multiple ends synchronous password logon
scheme is designed based on the random number sequence
projection and fully utilize the personal cloud computing
powers. This scheme can effectively defeat key logger and
off-line dictionary attacks.

Thus, to protect users, the present disclosure describes a
highly secure, cloud based information storage infrastructure
enhanced by TPM to meet the security demands that requires
data confidentiality, integrity and User Authentication.

In certain implementations, Java is used to implement the
disclosed systems because it is a suitable multi-platform envi-
ronment that provides ease of software development with
efficient applications. Moreover, Java is platform indepen-
dent, offering another advantage. In accordance with certain
implementations of the present disclosure, SHARE FOR
RSA library is used to implement AES-GCM mode encryp-
tion of files under the Java environment. Java’s robustness,
ease of use, cross-platform capabilities and security features
provides beneficial worldwide web solutions. The ability to
run the same program on many different systems is beneficial
to World Wide Web software and Java succeeds at this by
being platform independent at both the source and binary
levels. However, it should be understood that Java is merely
an exemplary mode of implementation, and other suitable
development environments may be used.

FIG. 90 shows a block diagram of a security system in
accordance with the present disclosure. Trusted computing
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design, which relies on Trusted Platform Module (TPM), is a
beneficial part of this design. It provides the advantage of
hardware security, overcoming weaknesses of solely-soft-
ware processing information protection systems discussed
above. It allows direct utilization of the TPM’s cryptographic
ability to encrypt the personal information.

According to an illustrative embodiment, the TPM design
is based on public key infrastructure, and thus may utilize
RSA 1024 bits or 2048 bits to encrypt files. A potential
downside for RSA is the efficiency—when the file size gets
large, RSA-based implementations may become clumsy.
Thus, in accordance with illustrative embodiments, AES 256
bits is used as the encryption method which has the same
security level as RSA 2048 bits but enhanced efficiency.
Then, TPM is used to protect the AES keys. While improving
performance, this approach also resolves the problem of stor-
age of cryptographic keys, which is problematic in solely-
software security design.

According to this illustrative embodiment, TPM is first
used to create 2048-bits binding keys to wrap and store the
index file encryption key. Because the private key can never
come out of TPM and is protected by the storage root key
which was stored in non-volatile RAM, the whole file system
is well protected.

As discussed above, to ensure the safety of cloud storage, it
is desirable that every access to information pieces in the
cloud storage be fully authenticated. In accordance with this
exemplary implementation, TPM Attestation Identity Key
(AIK) is used to provide identity attestation to server for
recovery of data pieces. In other alternatives, CA issued cer-
tificates and TPM signing keys are recommended to bind with
data for authentication. The present system, in contrast, pro-
vides efficiency and features of personal use, as the AIK is
used to provide identity proofto server. AIK is well protected
by SRK inside TPM and also unique identifier UUID is used
to refer to it and UUID is also a user identity to use specific
AIK. Thus, this design offers security requirements for the
cloud storage identity attestation.

According to another aspect of the present disclosure, split-
ting and spreading the encrypted files provides protection of
sensitive information. Exemplary illustrative embodiments
use a splitting-merging program that provides splitting and
merging functionality of files. This may be accomplished by
storing the paths and keys of the pieces to an index file. The
index file is further used for merging the pieces back to the
file. A system generated time stamp may provide a unique
seed for the generation of AES keys.

Generally, a password is often the weakest point of security
system. It may be easily captured by key logger or screen shot
capturer and sometime even guessed by and dictionary attack
and social engineering. To enhance the protection over the
password, exemplary systems in accordance with the present
disclosure use a multipart synchronous logon system in
which the password may be split and input on both the
Android device and PC separately and at the same time the
input may be transferred into random number sequences and
sent to the server. On the server side, when the server receives
the random sequences, it will reorganize all the sequences
based on their timestamp and generate the SHA-256 hash
value of the combined random number sequence. Finally, the
hash value may be compared to the correct one and verified.
This design can effectively defeat key logger or screen shot
capturer.

Random and varying salts may provide protection against
brute force attacks, dictionary attacks, and birthday attacks.
Protection can be given by encrypting, splitting and spreading
the information to be offline for the rest of life. The salt is a
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sequence of bytes that is added to the password before being
digested. This makes the digests different to what they would
be if one encrypted the password alone, and as a result pro-
tects against dictionary attacks. Adding salt to the key or
password can vastly extend the key range, which may make it
more difficult for the exhaustive search of'keys by brute force
attack.

In accordance with at least one embodiment of the present
disclosure, three devices may be used for the security consid-
eration of file protection: a server, an Android® device, and a
PC equipped with TPM. Thus, the overall system is easy to
implement and applicable for practical and commercial use.
In exemplary implementations, the only knowledge required
by the system on the part of the user is the passwords and the
input orders on the Android device and the PC. Then all the
remaining jobs are implemented by those three devices. So
the overall design is easy to use but can provide comparatively
high level security.

FIG. 91 shows an overview of the protection and unpro-
tection processes in accordance with the present disclosure.

After the user registers an account, the system operation
may be divided into two parts based on user choice, Protec-
tion and Unprotection. FIG. 92 illustrates the processes and
1/0 of Protection. FIG. 93 illustrates the processes and /O of
Unprotection.

In total, the overall design can be split into 5 modules:

In a synchronous log on scheme module, an Android®
phone and the client PC are the input devices and implement
the input digits to random number mapping. Each digit of the
password may be input alternately on the Android phone and
the client PC, and at the same time each of the digits may be
mapped into certain length random number sequence and sent
to the server for verification. On the server side, the SHA-256
hash value of correct random number sequence, which the
hash value of received random number sequence may be
compared to, is stored. The result of the compare may be sent
back to PC and Android for next operations.

An AES-GCM encryption-decryption scheme module
uses the AES-256 encryption method, which is considered to
be strong enough for exemplary security requirements. The
AES keys are generated based on a unique seed which is
based on system generated time stamp. To play against side
channel attack and timing attack, a GCM mode is introduced
into this design. The security of the GCM mode makes use of
the fact that the underlying block cipher cannot be distin-
guished from a random permutation. Finally, a random gen-
erated salt is added to play against brute force attack.

For a file splitting-merging module, a specific program is
written to split the encrypted files into pieces and bulks based
on random numbers. Junk data are also injected into the split
files. The paths and keys of the pieces are stored into an index
file. The index file is further used for merging the pieces back
to the original file. The index file may also be encrypted by
AES-GCM and split by the splitting program. In the decryp-
tion process, the recovery of all the files will start from the
index file.

A TPM key binding-unbinding module may provide bind-
ing and unbinding functionality. Binding generally includes
the operation of encrypting a message using a public key. That
is, the sender uses the public key of the intended recipient to
encrypt the message. The message is recoverable by decryp-
tion using the recipient’s private key. When the private key is
managed by the TPM as a non-migratable key only the TPM
that created the key may use it. Hence, a message encrypted
with the public key is “bound” to a particular instance of a
TPM. Keys may be considered communication endpoints and
improperly managed keys can result in loss of security. Thus,
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the TPM in accordance with the present disclosure aids in
improving security by providing key management. The final
index file encryption key is the root of the cryptographic
process, so it will be binding with TPM for concrete protec-
tion. In the decryption process, the index file encryption key
may be recovered using the corresponding private key by
providing correct identity to TPM.

Finally, a TPM signature authorization module may be
utilized when, due to cloud storage features, only the authen-
ticated users with unique AIK can access the data on the
server and recover the whole file. TPM signature authoriza-
tion scheme may defeat unauthorized recovery of distributed
index file pieces from server. At the end of the encryption
process, TPM will generate 2048 bits RSA Attestation Iden-
tity Key and the public key may be sent to the server for
storage. In the first place of decryption process, the TPM has
to provide the server the signature generated by previous
generated key, after the signature is verified by server using
stored public key, then the index file pieces can be sent back
to the client for the next operation of the decryption process.

FIG. 94 is a flow diagram of protection process. FIG. 95 is
a flow diagram of the un-protection process corresponding to
the protection process of FIG. 94. More details on these
processes are provided herein.

According to exemplary implementations, to use the infor-
mation system application, the first operation is user registra-
tion. User registration includes several parts, including pass-
word registration and cryptographic key registration. Table
18 lists exemplary user registration information.

TABLE 18

User Registration Information

Name Description

Attestation Identity Key(AIK)
AIK Usage Secret
AIK Migration Secret

TPM Identity Proof
AIK User Authentication
AIK Migration Verification

UUID Key Registration and
User Identity Proof
Logon Password System Logon(mapped

to Random # Sequence)

TPM Binding Key Binding Key User
Usage Secret Authentication
TPM Binding Key Binding Key Migration

Migration Secret Verification

FIG. 96 shows a user registration /O flow.

FIG. 97 shows a user account registration process, which
generally refers to the user creating the logon password for
authorized use of the application. The synchronous password
logon system may be considered the front line of the infor-
mation protection. According to this design, the user utilizes
the server, the client PC and the Android Device to perform
obfuscated synchronous logon verification. For the logon
scheme design, one aspect is the password digits to random
number sequence mapping. Thus, a primary function of the
user registration is the user password digits to random number
sequence mapping on both the client PC and the Android
Device. Then, the transferred password may be sent to server
to calculate the SHA-256 hash value which may be stored on
server for user verification.

FIG. 98 and FIG. 99 show operations taking place after the
user account registration. During the encryption process,
there is AIK registration, Binding key registration and related
authentication secret registration. AIK, which is the Attesta-
tion Identity Key, is used here as the identity proof of the
specific TPM and the verified user. It is created as the unique
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identity authentication and is protected by the Storage Root
Key which is strongly protected inside TPM in the non-
volatile RAM. In the ideal situation, the AIK should be issued
by the trusted CA by provide possession of a unique Endorse-
ment Key, and till now this scheme is not widely used. For
systems in accordance with the present disclosure, aiming at
the personal information protection on personal computing
devices, the CA certified AIK is not necessary. The unique
AIK inside the TPM can be used to attest identity. Further-
more, the user may register a unique identifier UUID which is
used as the reference to the unique AIK and also as the
identity proof of the authorized user. It can be created ran-
domly and also there may be an existing UUID inside TPM
for use.

To register AIK, a user may assign proper usage and migra-
tion policies to it, and the policies are protected by a user
created secret. After the AIK is created, the TPM binding key
also has to be created for key binding. And the same as AIK,
the user has to register a unique UUID to refer to binding key
and also for the assigned usage and migration policies, the
user has to register authentication secret for authorization of
using and migrating the binding key.

Alternative methods of user password input may be vul-
nerable to a key logger or screen capturer. For example, the
password can be stolen by a key logger, by phishing or by
shoulder-surfing. For example, the key logger code may log
all the key strokes at the operating system level so that such
logs are delivered to some adversaries who analyze what the
victim has keyed in their system, and then try to extract the
user password. Such a key logger may be very effective if the
user typed their password in an unsafe machine on which the
key logger is installed.

In accordance with the present disclosure, a password pro-
tection scheme is designed which involves random number
generation and server-client collaborative authentication. In
this exemplary implementation, no single one of these
machines possess the password, so this scheme can effec-
tively guard against key loggers and screen capturers.

FIG. 100 shows a random number table generation dia-
gram for use in an exemplary password protection scheme. In
the first operation in accordance with an exemplary method-
ology, a random number sequences table is generated and
stored on both the client PC and android phone separately.
Each of 26 letters and 10 number digits are mapped into a
random number sequence.

FIG. 101 depicts the overall logon system process. The
random number sequence representation of a correct pass-
word is combined and the hash value is stored on the server.
For example, if the password is “sun”, the random number
sequence representation of each digit may be
s—61784a64”, u—"e€975639b”, n—*2744c3e8”, and the
random number representation of password s
“61784a64¢975639b2744c3e8” of which the SHA-256 hash
value is stored on the server. Every time the user logs on, the
input password may be transferred into random sequences
representation which is sent to the server, and the hash value
may be generated and compared to stored correct one.

Each digit of password may be input alternately on the
Android phone and the client PC, and at the same time each of
the digits may be mapped into a random number sequence of
a certain length and sent to the server for verification. On the
server side, the SHA-256 hash value of correct random num-
ber sequence is compared to the hash value of received ran-
dom number sequence. The result of the comparison is sent
back to the PC and Android for the next operation. Ifthe result
is correct, then the confirmation signal may be sent back to the
PC and the Android device, and the cryptographic processing
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interface will may be displayed. If the result is wrong, then a
system exit signal may be sent and the error message may be
given.

In exemplary implementations in accordance with the
present disclosure, enhanced security is provided by selecting
Advanced Encryption Standard (AES) as the encryption-de-
cryption scheme. AES provides a robust replacement for the
Data Encryption Standard (DES) and to a lesser degree Triple
DES. AES supports key sizes of 128, 192 and 256 bits. It is
implementable in hardware and software, as well as in
restricted environments (for example, in a smart card) and
offers good defenses against various attack techniques. Until
May 2009, the only successful published attacks against the
full AES were side-channel attacks on some specific imple-
mentations. The design and strength of all key lengths of the
AES algorithm (i.e., 128, 192 and 256) are sufficient to pro-
tect classified information up to the SECRET level. TOP
SECRET information will require use of either the 192 or 256
key lengths.

FIG. 102 shows an exemplary process for deriving a master
key. In accordance with this exemplary implementation, 256
key lengths are used to get better security. In addition, the
random salt is added to play against brute force attack. To add
more security, the generation of the index file encryption key,
which is named the master key, is specially designed.

The generation of a master key has two operations in this
illustrative embodiment. First, the Android phone and the
client PC will both generate an AES key based on password
and random salts. Then the Android phone generated AES key
may be sent to the client PC and the two AES keys will derive
a master key by an XORing operation.

After the master has been generated, the encryption pro-
cess can take place. To offer protection from side channel
attacks, disclosed embodiments use GCM mode operation.
Galois/Counter Mode (GCM) is a block cipher mode of
operation that uses universal hashing over a binary Galois
field to provide authenticated encryption. GCM was designed
originally as a way of supporting very high data rates, since it
can take advantage of pipelining and parallel processing tech-
niques to bypass the normal limits imposed by feedback
MAC algorithms. This allows authenticated encryption at
data rates of many tens of Gbps, permitting high grade
encryption and authentication on systems which previously
could not be fully protected. Software implementations can
achieve enhanced performance by using table-driven field
operations. AES-GCM is an authenticated encryption algo-
rithm designed to provide both authentication and privacy.
The AES-GCM mode has four inputs and two outputs: inputs:
Secret Key, Initialization Vector IV, Plaintext and Additional
Authenticated Data; and Outputs: Cipher text and Authenti-
cation Tag.

FIG. 103 shows an encryption process in accordance with
the present disclosure.

According to exemplary implementations in accordance
with the present disclosure, a file splitting and merging
scheme can further defeat the attacker trying to access the full
information. Only the owner of files knows where the pieces
are and can recover them.

FIG. 104 shows a splitting process. FIG. 105 shows a
merging process. In accordance with the present disclosure,
the splitting-merging program is used twice. First, after the
files are encrypted by AES-GCM, the encrypted file may be
split into .piece file and .bulk file and then the .piece file may
be sent to the Android phone for storage and the .bulk file may
be saved on the client PC. The paths to the .piece and .bulk file
and the key for encryption are recorded in index file. Then for
the second time, the index file may be encrypted using a new
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AES key and the encrypted file may be split into .piece file
and .bulk file. The new AES key may be bound to TPM.
The .piece file may be sent to the server for storage and
the .bulk file may be stored on the client PC. In the decryption
process, the program will do the inverse operation. The index
file may be merged first and then decrypted. After that, the file
pieces can be merged together and decrypted according to the
index file.

FIG. 106 shows the generation of an index file. During the
file encryption and split processes, the index file is created as
areference for future unprotection. The index file contains the
location for files, file encryption keys, and IVs, random num-
bers for pieces extraction location. After the file encryption
and split processes, the index file is also completed. Then the
index file is encrypted by AES-GCM and finally split into
pieces.

FIG. 107 shows index file splitting.

FIG. 108 shows index file merging.

FIG. 109 shows that after the index file encryption and split
processes, file pieces and index file pieces are distributed on
the server, the client PC and the Android Device.

FIG. 110 shows a depiction of the encryption-splitting
process. FIG. 111 shows a depiction of the merging-decryp-
tion process. The AES-GCM program and the file splitting-
merging program work mutually with each other. They both
are used twice. First, after the targeted files are encrypted by
AES-GCM program, then the encrypted file is split and the
file pieces are distributed to the Android Device and PC as
well as datacenter servers. Then, the index file will be
encrypted and split into pieces and then distributed to server
and the client PC as well as datacenter servers. The decryp-
tion-merging process is generally an inverse process. The
mutated ciphertext is resistant to crypto side-channel attacks.

After the index file is encrypted and split, the index file
encryption key may be left relatively unprotected. The stor-
age and protection of the key is potentially problematic for the
security software that resides only on the software process,
the cryptographic keys can only be stored on the hard drive
which means that running that whole security process in
software is akin to leaving a spare front door key somewhere
in the yard—one is relying on being able to think of a key-
sized hiding place that a burglar won’t find. Thus, a hardware
security feature is introduced in systems in accordance with
the present disclosure.

A Trusted Platform (TP) may include a computing plat-
form that has a trusted component, which is used to create a
foundation of trust for software processes. TPM provides the
root of trust for identity based on the endorsement key inside
which was created uniquely by manufacturer and can never be
read or modified. Based on the root of trust, a tree of trust,
which is the name for key infrastructure inside TPM, can be
created inside TPM which was protected from the vicious
attack from any software outside. At the root of the trust tree
is the Storage Root Key (SRK), and any new created keys can
be protected by SRK or previous created key, all the keys can
only be used inside TPM by authenticated user based on the
settings. That means the TPM provide a reference point for
protection.

FIG. 112 shows the protection of the Storage Root Key. As
the root of the trust tree, the Storage Root Key should be well
protected. First, it is stored inside TPM in the NVRAM and
not taken out of TPM. Second, to use it, a user will identify the
ownership and insert the usage secret.

In accordance with the present disclosures, based on these
features of TPM, the disclosed systems utilize the binding
function of TPM. Binding generally includes the operation of
encrypting a message using a public key. That is, the sender
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uses the public key of the intended recipient to encrypt the
message. The message is only recoverable by decryption
using the recipient’s private key. When the private key is
managed by the TPM as a non-migratable key only the TPM
that created the key may use it. Hence, a message is encrypted
with the public key, “bound” to a particular instance of a
TPM. In accordance with the present disclosure, after the
index file was encrypted, the index file encryption key is
finally bound to TPM by using TPM generated 2048 bits RSA
binding key, and this binding key is further protected by SRK
inside TPM.

The TPM generates cryptographic keys but due to the low
cost nature the internal memory (i.e. number of key slots) is
limited. Nevertheless applications might need to store keys
permanently. With the key management component of the
TSS it is possible to store keys in a persistent storage (file
system) outside the TPM encrypted under a parent key. To do
so the user must provide this parent key before the TPM can
create a new key pair. Before the TPM writes to the persistent
storage it encrypts the new private key under its parent key to
ensure that no unencrypted key leaves the TPM.

The root of the key hierarchy is the storage root key (SRK)
which is generated at taking ownership and then stored inside
the TPM permanently.

In the creation of binding key, disclosed systems may
assign a (possibly globally) unique identifier called UUID to
the key and register the key with the UUID. Then the key
blobs are stored in the persistent storage in the OS file system.
Later the program can use this UUID as reference to the
requested key. The disclosed systems may also assign an
unmigratable policy to the key object which means the key
can never been migrated and can only be used by this specific
TPM.

FIG. 113 shows the operations of binding key creation and
key binding process inside TPM.

FIG. 114 shows TPM key unbinding process in the unpro-
tection process.

As explained above, TPM is based on root of trust. That is,
much of the value (or trust) associated with the TPM comes
from the fact that the EK is unique and that it is protected
within the TPM at all times. This property is certified by the
Endorsement Certificate (Cert).

The Endorsement Key (EK) is a public/private key-pair.
The size of the key-pair will generally have a modulus (a.k.a.
key size) of 2048 bits. The private component of the key-pair
is generated within the TPM by manufacturer and is never
exposed outside the TPM. TPM manufacturers will provide
the endorsement key pair and store this in tamper resistant
non-volatile memory before shipping the TPM. A certificate,
or endorsement credential, can then be created which con-
tains the public EK and information about the security prop-
erties of the TPM. The EK is unique to the particular TPM and
therefore the particular platform which supports for the root
of trust. Based on these features, TPM can be used to provide
identity authentication.

To add another layer of security to the disclosed systems, a
specific server-client authentication scheme may be used uti-
lizing the client PC equipped TPM. Generally, in the decryp-
tion process, the server stored index .piece file will not be sent
back to client unless the TPM identity has been authenticated.
Implementations in accordance with the present disclosure
can prevent the attacker trying to bypass the protection of
TPM and recover the index file. The exemplary features pro-
viding for such a design discussed below.

FIG. 115 shows an AIK generation and broadcast method-
ology. In the encryption process, after the index file was
encrypted and split into .piece and .bulk file, the .piece file
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would be send to the server for storage. Then an Attestation
Identity Key (AIK) pair is generated by TPM and the public
key is broadcast to the server.

In certain implementations, the AIK is kept in secret and
unique to represent the user and TPM. First, it is created as the
2048 bits RSA key. Second, it is protected by the SRK which
is the root of the trust tree. Third, it is registered with a unique
identifier UUID and both the UUID and AIK is saved on
persistent storage, e.g., a USB stick or a Hard Drive, so only
the user possesses them. Finally, the usage policy with secret
and migration policy is assigned to AIK. As illustrated above,
FIG. 98 depicts how AIK is protected.

In the decryption process, the identity authentication may
take place first between server and client before the
index .piece file can be sent back to the client PC, according
to the following operations.

a) Server uses the random number generator program,
which use the system time as seed, to generate a new nonce.
At the same time, TPM utilizes the inside random number
generator to generate a new nonce.

b) Server and client both send the new generated nonce to
each other.

¢) Both the server and client use the self-generated nonce to
XOR the received nonce to get new XORed nonce, and then
generate the SHA -1 hash value of it on both server and client.

d) TPM retrieves the AIK based on the UUID and signs on
the hash value using the private part of AIK, and then sends
the signature to server for verification.

e) Server receives the signature, and then uses the saved
public key and generated hash value to verify the signature,
and the result is sent back to client for next operations.

FIG. 116 shows a diagram of an identity attestation pro-
cess.

The Trusted Computing Group (TCG) publishes specifica-
tions defining architectures, functions and interfaces that pro-
vide a baseline for a wide variety of computing platform
implementations. Additionally, the TCG will publish specifi-
cations describing specific platform implementations such as
the personal computer, PDA, cellular telephones and other
computing equipment.

A Trusted Platform may include a computing platform that
has a trusted component, sometimes in the form of built-in
hardware, which it uses to create a foundation of trust for
software processes. Platforms based on the TCG specifica-
tions will generally meet functional and reliability standards
that allow increased assurances of trust. The TCG will publish
evaluation criteria and platform specific profiles that may be
used as a common yard stick for evaluating devices incorpo-
rating TCG technology. Achieving improved trust also
requires operational integrity of maintenance processes after
deployment.

FIG. 117 shows a generic system architecture for a PC
defined by TCG. The TPM hardware along with its support-
ing software and firmware provides the platform root of trust.
It is able to extend its trust to other parts of the platform by
building a tree of trust, where each link extends its trust to the
nextone. The TPM is basically a secure micro-controller with
added cryptographic functionalities. To simplify system inte-
gration into the PC platform, the TPM uses the Low Pin Count
(LPC) bus interface to attach to the PC chipset.

The TPM provides a set of crypto capabilities that allow
certain crypto functions to be executed within the TPM hard-
ware. Hardware and software agents outside of the TPM do
not have access to the execution of these crypto functions
within the TPM hardware, and as such, can only provide I/O
to the TPM.
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In case of the PC platform, the hardware TPM is part of the
mainboard and may not easily be removed or replaced. It is
typically connected to the rest of the system via the LPC bus.
The functionality of this hardware device resembles that of a
smart card. A tamper resistant casing contains low-level
blocks for asymmetric key cryptography, key generation,
cryptographic hashing (SHA-1) and random number genera-
tion. With these components it is able to keep secret keys
protected from any remote attacker. Additional high-level
functionality consists of protected non-volatile storage, integ-
rity collection, integrity reporting (attestation) and identity
management. TPM is a passive device, a receiver of external
commands. It does not measure system activity by itself but
rather represents a trust anchor that cannot be forged or
manipulated.

FIG. 118 shows a logical block diagram of a TPM. As a
building block of a trusted platform, TPM components are
trusted to work properly without additional oversight. Trustin
these components is derived from good engineering prac-
tices, manufacturing process and industry review.

The I/O component manages information flow over the
communications bus. It performs protocol encoding/decod-
ing suitable for communication over external and internal
buses. It routes messages to appropriate components. The I/O
component enforces access policies associated with the Opt-
In component as well as other TPM functions requiring
access control.

Non-volatile storage is used to store Endorsement Key
(EK), Storage Root Key (SRK), owner authorization data and
persistent flags. Platform Configuration Registers (PCR) can
be implemented in either volatile or non-volatile storage.
They are reset at system start or whenever the platform loses
power. TCG provides a minimum number of registers to
implement (16). Registers 0-7 are reserved for TPM use.
Registers 8-15 are available for operating system and appli-
cation use.

Attestation Identity Keys (AIK) must be persistent, but it is
recommended that AIK keys be stored as Blobs in persistent
external storage (outside the TPM), rather than stored perma-
nently inside TPM non-volatile storage. TCG hopes TPM
implementers will provide ample room for many AIK Blobs
to be concurrently loaded into TPM volatile memory as this
will speed execution.

Program code contains firmware for measuring platform
devices. Logically, this is the Core Root of Trust for Measure-
ment (CRTM). Ideally, the CRTM is contained in the TPM,
but implementation decisions may require it be located in
other firmware.

The TPM contains a true random-bit generator (RNG) used
to seed random number generation. The RNG is used for key
generation, nonce creation and to strengthen pass phrase
entropy.

A Sha-1 message digest engine is used for computing
signatures, creating key Blobs and for general purpose use.

TCG provides the RSA algorithm for use in TPM modules.
Its recent release into the public domain combined with its
long track record makes it a good candidate for TCG. The
RSA key generation engine is used to create signing keys and
storage keys. TCG requires a TPM to support RSA keys up to
a 2048-bit modulus, and mandates that certain keys (the SRK
and AIKs, for example) must have at least a 2048-bit modu-
lus.

An Opt-In component implements TCG policy providing
that TPM modules are shipped in the state the customer
desires. This ranges from disabled and deactivated to fully
enabled; ready for an owner to take possession. The Opt-In
mechanism maintains logic and (if necessary) interfaces to
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determine physical presence state and ensure disabling opera-
tions are applied to other TPM components as needed.

An execution engine runs program code. It performs TPM
initialization and measurement taking.

The TCG main specification may not provide the commu-
nications interfaces or bus architectures. These may be con-
sidered implementation decisions documented in the Plat-
form Specific Specification(s).However, TCG does provide
an interface serialization transformation that can be trans-
ported over virtually any bus or interconnect.

TCG provides that the TPM be physically protected from
tampering. This includes physically binding the TPM module
to the other physical parts of the platform (e.g., motherboard)
such that it cannot be easily disassembled and transferred to
other platforms. These mechanisms are intended to resist
tampering. Tamper evidence measures are to be employed.
Such measures enable detection of tampering upon physical
inspection.

To implement the root of trust, TPM may utilize the tree of
trust inside for key management to extend its trust to other
parts of the platform. There are different types of key includ-
ing Storage Root Key (SRK), Endorsement Key (EK), Attes-
tation Identity Key (AIK), Signing Key, Storage Key, Bind
Key, Legacy Key, and Authentication Key.

FIG. 119 shows the TPM key hierarchy, called tree of trust,
where every TPM key has a parent key in the layer above.
Here, any storage key may wrap several other storage keys or
keys of other types (for signatures, identity establishment,
etc.). At the root of the tree of trust is the Storage Root Key
(SRK). Before a user or an application can load a key from the
user persistent storage the Key Manager establishes and veri-
fies the entire key chain up to SRK.

The Endorsement Key (EK) is a public/private key-pair.
The size of the key-pair is mandated to have a modulus (a.k.a.
key size) of 2048 bits. The private component of the key-pair
is generated within the TPM and is never exposed outside the
TPM. The EK is unique to the particular TPM and therefore
the particular platform.

Much of the value (or trust) associated with the TPM
comes from the fact that the EK is unique and that it is
protected within the TPM at all times. This property is certi-
fied by the Endorsement Certificate (Cert). The same party
that provides the EK may not provide the Endorsement Cert.

AlKs are used to provide platform authentication to a ser-
vice provider. This is also called pseudo-anonymous authen-
tication and is different from user authentication.

Signing keys are asymmetric general purpose keys used to
sign application data and messages. Signing keys can be
migratable or non-migratable. Migratable keys may be
exported/imported between TPM devices. The TPM can sign
application data and enforce migration restrictions.

Storage keys are asymmetric general purpose keys used to
encrypt data or other keys. Storage keys are used for wrapping
keys and data managed externally.

Bind keys may be used to encrypt small amounts of data
(such as a symmetric key) on one platform and decrypt it on
another.

Legacy Keys are keys created outside the TPM. They are
imported to the TPM after which may be used for signing and
encryption operations. They are migratable.

Authentication Keys are symmetric keys used to protect
transport sessions involving the TPM.

The TPM may become a low cost commodity component,
suitable for consumer class computing platforms. Therefore,
the TPM itself may have limited runtime (volatile) and per-
sistent (non-volatile) storage. TCG usage scenarios suggest
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unlimited storage may be advantageous. For this reason TPM
external storage and a cache manager may be provided.

To allow for virtually unlimited keys and storage areas the
RTS packages keys destined for external storage into
encrypted key BLOBs. Key blobs are opaque outside the
TPM and may be stored on any available storage device (e.g.,
Flash, Disk, and Network File Server). BLOB structures are
bound to a particular TPM and may be sealed to a particular
platform configuration as well. Blobs are referenced using a
cryptographic hash of its contents, by handle or other suitable
referencing mechanism. Reference identifiers disambiguate
Blobs externally to the KCM or other application program
performing the storage functions. Other information includ-
ing Key Type and Key Attribute are available externally.

The TPM exposes interfaces that allow external programs
the ability to manage the limited storage resources of the
TPM. Management function is distinguished from applica-
tion function by separating the ability to cache keys from the
ability to use a key. Key Cache Managers (KCM) will gener-
ally only be concerned with caching keys, while applications
may be concerned about key usage. A noted exception is
storage keys which are used to protect other keys. The KCM
will likely control both caching and use of storage keys.

Keys sealed to a particular platform configuration may be
loaded even when the platform is outside the intended con-
figuration. This allows flexibility in transitioning the platform
between readiness states without impacting its ability to
obtain needed keys. Security is maintained because configu-
ration is checked each time it is used, hence loading need not
be checked. The KCM tracks available key slots and deter-
mines when it is appropriate to expel a key and replace with
another. The TPM does not provide proactive notification
when Key Slots are depleted or when applications need to use
a particular key. As such, application programs may need to
inform the KCM when such events occur or the KCM needs
to implement a TPM interface layer, through which applica-
tions obtain TPM services,. The TPM provides interfaces to
prepare keys for transitioning between TPM and Storage
Device. The KCM generally will not render keys in the clear.

Designers of secure distributed systems, when considering
exchange of information between systems, should identify
the endpoints of communication. The composition and
makeup of the endpoint is as important to the overall security
of the system as is the communications protocol. TCG
designers assert endpoints are generally comprised of asym-
metric keys, key storage and processing that protects protocol
data items.

Classic message exchange based on asymmetric cryptog-
raphy suggests that messages intended for one and only one
individual can be encrypted using a public key. Furthermore,
the message can be protected from tampering by signing with
the private key. Keys are communication endpoints and
improperly managed keys can result in loss of security. Addi-
tionally, improperly configured endpoints may also result in
loss of security. The TPM aids in improving security by
providing both key management and configuration manage-
ment features such as Protected Storage, Measurement and
Reporting. These features can be combined to “seal” keys and
platform configuration making endpoint definition stronger.

TCG provides four classes of protected message exchange:
Binding, Signing, Sealed-Binding (Sealing) and Sealed-
Signing.

Binding is the traditional operation of encrypting a mes-
sage using a public key. That is, the sender uses the public key
of'the intended recipient to encrypt the message. The message
is only recoverable by decryption using the recipient’s private
key. When the private key is managed by the TPM as a
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nonmigratable key, only the TPM that created the key may use
it. Hence, a message encrypted with the public key, “bound”
to a particular instance of a TPM. It is possible to create
migratable private keys that are transferable between multiple
TPM devices. As such, binding has no special significance
beyond encryption.

Signing also in the traditional sense, associates the integ-
rity of a message with the key used to generate the signature.
The TPM tags some managed keys as signing only keys,
meaning these keys are only used to compute a hash of the
signed data and encrypt the hash. Hence, they cannot be
misconstrued as encryption keys.

Sealing takes binding one operation further. Sealed mes-
sages are bound to a set of platform metrics specified by the
message sender. Platform metrics specity platform configu-
ration state that must exist before decryption is allowed. Seal-
ing associates the encrypted message (actually the symmetric
key used to encrypt the message) with a set of PCR register
values and a non-migratable asymmetric key.

A sealed message is created by selecting a range of PCR
register values and asymmetrically encrypting the PCR val-
ues plus the symmetric key used to encrypt the message. The
TPM with the asymmetric decryption key may only decrypt
the symmetric key when the platform configuration matches
the PCR register values specified by the sender. Sealing is a
powerful feature of the TPM. It provides assurance that a
protected message is only recoverable when the platform is
functioning in a very specific known configuration.

Signing operations can also be linked to PCR registers as a
way of increasing the assurance that the platform that signed
the message meets a specific configuration requirement. The
verifier mandates that a signature must include a particular set
of PCR registers. The signer, during the signing operation,
collects the values for the specified PCR registers and
includes them in the message, and as part of the computation
of'the signed message digest. The verifier can then inspect the
PCR values supplied in the signed message, which is equiva-
lent to inspecting the signing platform’s configuration at the
time the signature was generated.

As illustrated in system design discussions above, this
exemplary implementation consists of five modules and each
of'them provide a different layer of security. Java is chosen as
the computer language to provide all these functions,
although other programming languages are within the scope
of'the present disclosure. The RSA SHARE FOR JAVA secu-
rity library provides the programming API in this exemplary
implementation. To communicate with TPM security chip,
TAIK TCG Java software stack provides the Java implemen-
tation of TCG software stack and was chosen as the API for
TPM programming. More exemplary implementation details
are discussed herein.

In a synchronous logon system design, to make sure that
the password transmitting between the client, the Android
device, and the server may not reveal the password informa-
tion and any one of the three devices doesn’t possess the
whole password, random number sequences are used as the
representation of digits of password to be sent to server for
verification. So before start the logon process, a random num-
ber sequences table should be generated both on the client PC
and the Android Device. The tables on the two devices are
different.

FIG. 120 shows a method for the password digit to random
number sequence mapping.

After the random number sequence tables have been gen-
erated both on client and the Android Device, the random
number sequences mapping of password should be sent to
server and the SHA-256 hash value of the random number
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sequences mapping are calculated by server and stored on
server side for password verification. F1G. 121 shows the hash
value stored on the server side in the situation where the
password is “sh05”.

FIG. 122 shows an overview of the password verification
process. After the user starts the three devices for password
verification, the server is waiting on port 2228 for the incom-
ing random number sequences. Then the user should input the
password digits on the client PC and the Android Device
separately following the input order set up in the random
number table generation operation. In password field on the
user password input window, key listener is added so that
each user typing will trigger a key typed event which will
perform the password digit to random number sequence map-
ping and will send the sequence to server side. On the server
side every random number sequences is recombined into one
new sequence based on the timestamp. Then after password
input finished, the SHA-256 hash of the combined random
number sequence is generated and compared to the correct
one. Then the verification result may be feedback to client and
the Android Device.

FIG. 123 shows an exemplary implementation of a master
key generation method. FIG. 124 shows an exemplary imple-
mentation of an encryption key generation method. In this file
encryption and decryption design, the index file is a critical
point because it contains all the paths of the file pieces and the
cryptographic keys. So for security consideration, the master
key used for index file encryption and decryption is generated
from two keys, one from the client PC and another from the
Android Device. The two keys are XORed into the master key
before the encryption takes place. In the process of key gen-
eration process on the client PC and the Android Device,
random salt is added.

The key used for user file encryption and decryption is
generated from a random number generator which utilize the
system time with random salt added as the seed for random
number generation.

To achieve the requirement for protection over sensitive
data and get better security level, AES-GCM mode encryp-
tion method was chosen as the cryptographic process stan-
dard for this exemplary implementation. FIG. 125 illustrates
an exemplary file encryption implementation. FIG. 126 illus-
trates an exemplary file decryption implementation.

The file splitting may take place after the file encryption,
and the file merging may be run before the file was sent to
decryption. The file splitting and merging can be run twice
respectively. One for encrypted personal file and another for
encrypted index file. In this exemplary implementation, the
splitting function randomly takes %5 of the data from the
original file and replaces it with randomly generated bytes.
The random data taken out is stored in a piece file. The file
with the modified contents is then stored in a bulk file. The
original file name, the key and IV used for encryption and the
random byte locations are all stored in the index file which is
split later.

FIG. 127 shows an exemplary implementation for a file
split. FIG. 128 shows an exemplary implementation for a file
merge.

Random number generation is important for cryptographic
key creation. To get better randomness and therefore better
security, 64-bit system time (GMT) plus salt and password
combination is used in this implementation as the seed for
random number generator.

In file splitting process, random number generator is used
to provide the random position as start point for content
extraction. FIG. 129 shows an exemplary implementation for
the random number generator.
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As illustrated above, the index file plays an important role
in the system design. It contains paths to the file pieces and
keys to decrypt them. Thus, the index file may be encrypted
by AES-GCM to be protected. The protection of the index file
encryption key is also important. The TPM security chip is the
better choice for this design to provide hardware protection
over the index file encryption key which means TPM binding
was used to bind the key to TPM.

FIG. 130 illustrates an exemplary implementation of bind-
ing key creation. The root of the key hierarchy is the storage
root key (SRK) which is generated at taking ownership and
then stored inside the TPM permanently. In the creation of
binding key, implementations in accordance with the present
disclosure assign a (possibly globally) unique identifier
called UUID to the key and register the key with the UUID.
Then the key blobs are stored in the persistent storage in the
OS file system. Later the program can use this UUID as
reference to the requested key. Exemplary implementations
also assign an unmigratable policy to the key object which
means the key can never been migrated and can only be used
by this specific TPM.

FIG. 131 illustrates an exemplary implementation for bind-
ing. After the binding key was created and stored in persistent
storage, the binding process can take place. Binding is the
traditional operation of encrypting a message using a public
key. That is, the sender uses the public key of the intended
recipient to encrypt the message. The message is only recov-
erable by decryption using the recipient’s private key. When
the private key is managed by the TPM as a non-migratable
key only the TPM that created the key may use it. Hence, a
message encrypted with the public key, “bound” to a particu-
lar instance of a TPM.

FIG. 132 illustrates an exemplary implementation for
unbinding. When the binding key needs to be retrieved for
unbinding process, it can be retrieved using UUID as refer-
ence.

After the index file was split into .piece file and .bulk file,
to increase the difficulty to recover the index file pieces by
attacker, the .piece file is sent to server for storage. In this
illustrative embodiment, TPM is used to further prevent
attackers from trying to recover the whole index file without
the identification of TPM.

To do this, the TPM Attestation Identity Key (AIK) is used
as the identity key of TPM and every time the PC wants to
request the .piece file back, it has to identify the particular
TPM to server which has the public AIK key stored.

FIG. 133 illustrates an exemplary implementation for
Attestation Identify Key generation. AIK is regarded as an
alias for the Endorsement Key. Each TPM can support many
AlKs, thus the user can have many un-linkable keys that can
be used to maintain anonymity between different service
providers who require proof of identity. These AIKs must,
therefore, be persistent and although they could be stored on
the TPM non-volatile memory, for practical reasons the stan-
dards recommend keeping the AIK keys in secure external
storage.

To identify the TPM is the specific TPM that the user own,
the AIK key is used to generate a signature and send the
signature to server which has the public AIK key stored.
When the server verified the signature and makes sure the
TPM is the correct one, it will send the index .piece file back
to the client PC for file un-protection process.

Before the TPM use the AIK to sign, a new Nonce has to be
generated and the hash value of the Nonce is signed by the
AIK.

To generate the new Nonce, the client and server will both
generate a nonce separately. The client use TPM random
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number generator to generate the nonce and the server use
software random number generator which use system time as
seed. After the two nonces were generated, the client and
server will exchange the nonce with each other and then the
final Nonce is generated on both sides by XORing the nonce
from client and the nonce from server.

Finally, the SHA-1 hash value of Nonce was generated and
the AIK signs on it for server verification as shown in FIG.
122.

FIG. 134 provides an overview of an exemplary UUID
registration process. FIG. 135 provides an overview of an
exemplary identity attestation implementation.

Implementations in accordance with the present disclosure
use Java as the programming language due to advantages of
Java. Java is a general-purpose, concurrent, class-based,
object-oriented computer programming language that is
designed to have few implementation dependencies. It is
intended to let application developers “write once, run any-
where” (WORA), meaning that code that runs on one plat-
form does not need to be recompiled to run on another. Java
applications are typically compiled to byte code (class file)
that can run on any Java virtual machine (JVM) regardless of
computer architecture. Java is one of the most popular pro-
gramming languages in use. Java’s robustness, ease of use,
cross-platform capabilities and security features provides
worldwide web solutions. The ability to run the same pro-
gram on many different systems is crucial to World Wide Web
software and Java succeeds at this by being platform inde-
pendent at both the source and binary levels. Also Java-based
Android phone is a key point in this design to get better
security, so Java programming language is the best choice.
However, it should be understood that systems, components,
and methodologies in accordance with the present disclosure
may also be implemented with any other suitable program-
ming language.

In at least one exemplary implementation, instead of using
Sun security library, RSA BSAFE® Share for Java Platform
(Share for Java) may be chosen as the toolkit for security
implementation.

Share for Java provides various security features including
cryptography, Public Key Infrastructure (PKI), and Transport
Layer Security (TLS). Using cryptography, algorithms pro-
vide encryption, digital signatures, message digests and
Pseudo Random Number Generation (PRNG). Using PKI
technology, Digital Certificates may be used to identify
secure servers on the Internet and are used with encrypted and
signed email. TLS technology provides the security for
secure https connections over the Internet.

Share for Java is a Java security toolkit. Share for Java
contains two jar files: shareCrypto.jar: Cryptographic and
PKI functionality implemented as a Java Cryptographic
Extension (JCE) provider; and shareTLS jar: SSL v3.0, TLS
v1.0, v1.1 and v1.2 functionality implemented as a Java
Secure Sockets Extension (JSSE) provider.

Before installation of the Share for Java toolkit, the correct
Java Cryptography Extension (JCE) Jurisdiction Policy Files
may be downloaded and installed first following the two
operations: (1) extract the local_policyjar and US_
export_policy.jar files from the Downloaded.zip file; and (2)
copy local_policy.jar and US_export_policy.jar to the <jdk
install dir>/jre/lib/security directory, overwriting the existing
policy files.

In accordance with Share for Java installation procedures,
the Share for Java binary distribution directory structure is
copied into a suitable location on the target system and the
Share for Java toolkitjar files, shareCrypto.jar and
shareTLS. jar are added to the class path.
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To Statically Register the Share for Java JCE and JSSE
providers the shareCrypto.jar and shareTLS jar are copied to
<jdk install directory>/jre/lib/ext directory and the JCE and
JSSE providers is added to the provider list in the <jdk install
directory>/jre/lib/security/java.security file using the two
lines below:

security.provider.1=com.rsa.jsafe.provider.JsafeJCE

security.provider.2=com.rsa.jsse.JsseProvider

Subsequently, all of the subsequent provider entries are
modified, changing value of n in security.provider.n so the
providers are in ascending order and each provider has a
unique number.

The Trusted Computing Group (TCG) specifies the Trusted
Platform Module (TPM) and the accompanying software
infrastructure called TCG Software Stack (TSS). This system
software defines interfaces to applications written in the C
language. IAIK Java TCG Software Stack makes the TSS
available to Java developers in a consistent and object ori-
ented way.

The Trusted Computing Group (TCG) designed the TSS as
the default mechanism for applications to interact with the
TPM. In addition to forwarding application requests to the
TPM the TSS provides a number of other services such as
concurrent TPM access or a persistent storage on the hard
disk for cryptographic keys generated inside the TPM.

TPMs are required to provide protected capabilities and at
the same time are designed as low cost devices. Due to their
inexpensive nature, the internal resources and external inter-
faces are kept to a minimum.

FIG. 136 shows the Trusted Computing Group Software
Stack layers to provide usability, functionality and abstrac-
tion. Functions that require protected capabilities are imple-
mented in the TPM while non-sensitive features which do not
require hardware protection are implemented in software. To
allow a common access to this Trusted Computing function-
ality, these software components are combined into the TSS
and offer a standardized interface.

The TPM device driver (TDD) resides in the Kernel space.
For a 1.1b TPM this driver is vendor specific since it just
offers a proprietary interface to upper layers whereas 1.2
TPMs support generic TPM Interface Specification (TIS)
drivers. TIS provide a vendor independent interface to access
TPM functionality. It depends on the platform and the oper-
ating system but the TDD may also support additional func-
tionality such as power management. Nowadays, all major
operation systems ship with TIS drivers or at least support
them.

The TSS Device Driver Library (TDDL) resides in User
space. From the user’s point of view it exposes an OS and
TPM independent set of functions that allow a basic interac-
tion with the TPM. This includes sending commands as byte
streams to the TPM and receiving the TPM’s responses. The
TCG specifies the TDDL Interface (TDDLI) as a required set
of functions implemented in the TDDL. The intention was to
offer a standardized TPM interface regardless of the TPM
vendor and the accompanying TPM device driver. This
ensures that different TSS implementations can communicate
with any given TPM. In contrast, the communication between
the TDDL and the TPM is vendor specific. The TDDL is
designed as a single-instance and single-threaded compo-
nent.

The jTSS can operate on major Operating Systems used
today, including releases of Windows, such as Windows 8 or
Windows Server 2012.

The Linux OS implements the TDDL such that it opens the
TPM device file (/dev/tpm*) provided by the underlying
driver. Microsoft ships Windows Vista with a generic TIS
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driver that accesses the TPM via the so called TPM Base
Services (TBS). This service interface should allow similar
access to the TPM as the device file under Linux does.

FIG. 137 shows the main components of the Trusted Core
Service (TCS) and their interactions. TCS is a system service
and there is a single TCS instance for each TPM. The com-
munication with the TPM relies on the TDDL and ensures
that commands are properly serialized. The TCG defined the
TCS Interface TCSI that specifies the communication
between the TCS and the Trusted Service Provide TSP.

FIG. 138 shows how the TSP and the TCS can communi-
cate either via local method calls or via the Simple Object
Access Protocol (SOAP) interface. The standard access to the
TSS for applications is the TSP interface. Applications can
directly link to the TSP library and use this interface to access
the TCS. Local calls are mainly used for testing purposes
whereas the SOAP communication covers a larger range of
applications.

FIG. 139 shows an overview of TSPI. The TSS Service
provider (TSP) is the highest abstraction layer in the TSS and
offers services defined by the TCG to applications. Due to the
design as a system library, the TSP directly links to applica-
tions. For different applications several TSPs can coexists
side by side and interact with one single TCS. Applications
can access the TSP by a TCG defined TSP Interface (TSPI).

For the implementation, a context object serves as entry
point to all functionality such as authorized and validated
TPM commands, policy and key handling, data hashing,
encryption, and PCR composition. The TSP can also be used
to integrate the TPM in cryptographic libraries like
PKCS#11.

The Java programming language evolved in the last years
to a commonly accepted environment. The main advantages
are a restrictive type and memory safety ideally suited for
security relevant applications.

Although, the basic concepts and functionality of the
native TSP remains the same in its Java counterpart, several
aspects were changed to meet the object oriented nature of
Java. TSS entities such as contexts, keys, hashes, or the TPM
are represented by actual Java objects. This relieves develop-
ers from object handles and memory management as required
in the original TSP. The Java interface provides all the flex-
ibility and features of the underlying stack to Java developers.
Existing resources such as TSPI based C-code can therefore
easily be mapped to Java. Some relevant classes are described
below.

TclContext: A context represents a connection to the TSS
Core Services. One can either connect to a local or a remote
TCS. A context allows specifying the connection host. The
context creates all further TSS objects like policy objects and
registers, loads or unregisters keys from the persistent stor-
age. The context can close objects (release their handles), get
information (capabilities) about the TCS as well as free TSS
memory.

TcITPM: This class represents the TPM and parts of its
functionality. It provides methods to take or clear TPM own-
ership, read and set the TPM status, obtain random numbers
from the TPM, access time stamping functions, or read and
extend PCR registers. Aside from low level functions, e.g.,
trigger a TPM self-test, it offers functions to create “attesta-
tion identities”. Further, it can do quote operations to attest
the current state of the platform represented by the contents of
the PCR registers.

TclRsaKey: Instances of this class represent keys in the
TPM’s key hierarchy. It provides functionality to create a new
key, load a key into a key slot of the TPM, or certify keys.
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TclEncData: This class provides access to the TPM’s bind/
unbind and seal/unseal functions which encrypt data with a
TPM key. If this key is not migratable only the TPM that did
the bind operation is able to unbind the data. It is computa-
tionally unfeasible to decrypt data if the TPM and therefore
the according private key are unavailable any more. Sealing
takes this concept an operation further: This operation
includes the platform configuration to encrypt data with a
TPM key. By that, the sealed data can only be unsealed if the
platform is in the state specified at seal time. The platform
configuration is represented by the content of the TPM’s
PCRs.

TclHash: This class provides access to the TSS’s hash
algorithm SHA1. That includes unkeyed hash calculation and
verification as well as keyed hash functions, e.g., create sig-
natures of data blocks with a TPM key.

TclPerComposite: The platform configuration registers
(PCRs) can be used to attest the state of a platform (quote
operation) or to seal data to a specific configuration. Instances
of this class select one or more PCRs and hand them to the
quote or seal functions.

TclPolicy: The policy class handles authorization data for
TSS objects such as keys. The authorization data consists of
the SHA-1 hash of the user password. Note that different
character encodings (ASCIL, UTF-16LE Unicode, etc.) will
hash to different values. Alternatively to setting a password, a
pop-up window will ask the user to enter the appropriate
secret. UTF-16LE Unicode without a zero string termination
should be used.

TcINvRam: This class stores the attributes of a region of
non-volatile RAM inside the TPM. It can be used for defining,
releasing, reading or writing such a region. An example is the
Endorsement Key certificate shipped with Infineon TPMs.
FIG. 140 shows a network diagram used in connection with
exemplary implementation in accordance with the present
disclosure. To run this exemplary implementation, two PCs
and one Android Device are needed, and at least one PC
equipped with TPM, wherein one PC is acting as the server,
and the PC equipped with TPM is acting as the client. FIGS.
141-152 pertain to synchronous log on operations.

FIG. 141 shows a screen display in which a user can input
a server IP address on a client PC. FIG. 142 shows a screen
display in which a user can input a server address on the
Android Device.

FIG. 143 and F1G. 144 show screen displays in which, after
the server IP has been input, a user may click “OK” on both
devices and then the password input window is shown on both
the client and the Android Device.

FIG. 145 shows a screen display on the server side, in
which the server is ready to receive the random number
sequences that represent the password input.

FIG. 146 and FIG. 147 show screen displays by which the
password can be input on both the client PC and the Android
Device one by one. On the client, at the same time that each
digit has been typed, the digit is mapped into a random num-
ber sequence and that is sent to server. On the Android Device,
after each digit has been typed, user has to click “send”
button, and then the digit is mapped to a random number
sequence and that is sent to server for verification.
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FIG. 148 illustrates the server side, where the sent random
number sequences are received and stored into a random
number sequence string based on the order of arriving time.

FIG. 149 illustrates a screen display in which, after the
password input has finished on the Client and the Android
device, the user can click the “finish” button on the Client
password input window.

FIG. 150 shows a screen display in the situation after
pressing the “Finish” button on the Android Device. This will
send a signal to server telling the password input is finished
and the verification can then take place. After the password
has been verified, the server will give feedback to the client
and the Android device.

FIG. 151 shows a screen display in which clicking the
“OK” button results in the cryptographic window being
shown on the client side.

FIG. 152 shows a screen display in which, on the Android
side, after the password has been verified, the next crypto-
graphic window is shown.

FIGS. 153-155 pertain to operations performed in file
encryption and splitting.

FIG. 153 shows a screen display in which, upon pressing
the “Protect” button, the file chooser is open for user, and the
user can select the file that will be encrypted.

FIG. 154 shows a screen display with a confirmation box
that will pop up after the files have been chosen, after the user
clicks the “Open” button, and after the protection process
starts and the AES-6CM encryption and file splitting process
take place.

FIG. 155 shows a screen display in which, after a user
clicks “OK” and within 15 seconds, the user has to click
“Connect” on the Android Device to receive the split file
pieces.

At the same time, the index file is created, and then it is
encrypted and split into .piece and .bulk file.

FIG. 156 pertains to operations performed as part of TPM
bindings. FIG. 156 shows a screen display in which a user
inputs the password for the binding key. Then, the TPM
binding protection will take place to protect the index file
encryption key.

Then, the usage policy and secret policy is assigned to the
binding key object and the index file encryption key is bound
to TPM.

FIGS. 157-158 pertain to operations performed as part of
TPM attestation identify key generation. FIG. 157 shows a
screen display in which a user inputs the password for the
signing key. Then, TPM will generate the RSA signing key
pair and distribute the index .piece file to server side for
storage.

FIG. 158 shows a screen display in which, after the Signing
key pair has been generated, the public key and the
index .piece file is sent to server for storage.

Following these operations, the Protection process may be
considered complete.

Turning to TPM signature verification, FIG. 159 shows a
screen display in which an authentication secret can be
entered. The signing key pair has to be retrieved and loaded on
TPM by providing the authentication secret.
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Then the server and TPM may both generate a new nonce
and send the nonce and each other, then the two nonce will
XOR with each other into a new nonce on both client and
server. After that, a SHA-1 hash value is generated using the
new generated nonce.

Then TPM will sign on the SHA-1 hash value and send the
signature to server for verification. After the TPM identity has
been verified by server, the index .piece file can be sent back
to client for the merging and decryption process.

FIG. 160 shows a screen display by which a user inputs the
authentication secret to TPM to unbind the key. This is done
because to decrypt the index file, the index file cryptographic
key has to be unbound from TPM.

FIG. 161 and FIG. 162 show screen displays after file
pieces are sent back to the client. After the index file crypto
key has been retrieved, the index file then can be decrypted.
Then user has to get all the file pieces back to client for
merging and decrypting by click the “decrypt” button on the
Android Device.

After the file has been decrypted, it is saved back to the
original folder and then user can reset the application status
by clicking “Reset” button. Then all the intermediate files are
deleted.

A description is now provided regarding efficiency mea-
surements in term of latency for an exemplary implementa-
tion. Measurements were taken by dividing the exemplary
implementation into four parts to measure the execution
latency for each part, after which the total protection latency
and unprotection latency were separately determined.

To set up the measurement, different file sizes and file
numbers were provided as different test groups. For each
group, execution latency was measured 10 times in seconds.
The results are set forth herein.

This exemplary implementation utilized three devices:
Server PC, Client PC and Android Phone. The hardware
configurations for this exemplary implementation are pro-
vided in Tables 19-21.

TABLE 19

Server: Lenovo y470

Processor Intel ® Core ™ i7-2630QM Processor with
Intel Turbo Boost Technology™* 2.0

(2.0 GHz, 6 MB Cache)
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TABLE 19-continued

Server: Lenovo y470

Operating System Windows ® 7 Professional

Video Graphics NVIDIA ® GeForce ® 550M 1 GB/2 GB
graphics Intel ® HD Graphics 3000
Memory 8 GB DDR3 1066/1333 MHz memory
Hard Drive SATA 750 GB 5400 rpm HDD
Wireless LAN Intel ® Centrino(R) Wireless-N 2200
Adapters

TABLE 20

Client: Lenovo ThinkPad T530

Processor Intel ® Core ™ i7-3730QM Processor
@2.4 GHz (6 M Cache, up to 3.70 GHz)

Operating System Windows ® 7 Home Premium

Video Graphics NVIDIA NVS 5400M Graphics, 1 GB
DDR3 Memory
Memory 8 GB DDR3 - 1600 MHz (1 DIMM)
Hard Drive SATA 1 TB 5400 rpm HDD
TPM Trusted Platform Module 1.2
Wireless LAN Intel ® Centrino(R) Wireless-N 2200
Adapters

TABLE 21

Android Phone: HTC One X

Processor Qualcomm ® Snapdragon ™ 600, Quad
Core, 1.7 GHz
Platform Android ™ with HTC Sense ™
Memory 2 GBDDR2
Total Storage 32GB
Network LTE: US (AT&T): 700/850/AW S/1900
MHz
Wi-Fi ® Wi-Fi ®: IEEE 802.11 a/ac/b/g/n

The synchronous logon system execution includes the
interaction among the Android Device, the client PC and
server. For testing, different file size and file numbers were
used as different test groups. For each group, measurements
of execution latency in seconds were taken 10 times. The
difference between each group is mainly due to the user input
speed. Here, Logon Latency=User Input Latency+Network
Latency+Verification Latency. Table 22 shows logon system
measurement (Unit: Seconds, KB: Kilo Bytes)

TABLE 22
File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File number: 1 13.1 1.7 109 112 127 102 9.7 92 101 122 11.1
File size: 12 KB
File number: 2 10.5 9.8 10.6 103 94 113 9.3 105 9.1 11.2 10.2
File size: 24 KB
File number: 3 14.1  10.2 9.2 124 127 108 11.2 103 9.6 11.5 11.2
File size: 36 KB
File number: 5 103 109 115 12,7 107 9.1 9.5 102 119 123 10.91
File size: 300 KB
File number: 2 121 102 114 125 94 9.6 122 103 113 140 11.3

File size: 100 KB
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In the protection process, the encryption and splitting effi-
ciency is given in the term of execution latency. Here, File
Encryption & Splitting Latency=AES/GCM Encryption
Latency+File Splitting Latency. Table 23 illustrates file
encryption and split measurement (Unit: Seconds, KB: Kilo
Bytes)

TABLE 23

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
Filenumber: 1~ 0.67 0.68 0.69 0.7 0.68 073 077 071 079 077 0719
File size: 12 KB
Filenumber:2 091 0.85 076 077 078 078 0.82 080 079 078 08
File size: 24 KB
Filenumber:3  0.92 0.83 0.83 0.89 087 091 082 085 082 087 086
File size: 36 KB
File number: S 3.34 334 341 333 333 344 332 334 334 333 3352
File size:
300 KB
File number:2 1.8 112 114 114 115 114 113 115 115 114  1.206
File size:
100 KB

In the unprotection process, the decryption and merging
efficiency is measured. Here, File Merging & Decryption 25
Latency=AES/GCM Decryption Latency+File Merging
Latency. Table 24 shows File Decryption & Merge Measure-
ment (Unit: Seconds, KB: Kilo Bytes).

TABLE 24
File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
Filenumber:1 ~ 0.01  0.011  0.01 001 0017 001 0011 0009 0009 0.1 0.0107
File size: 12 KB
File number: 2 0.006  0.017  0.017 0009 0.017 0009 0.008 0017 0008 0009 00117
File size: 24 KB
Filenumber:3  0.026  0.074  0.027 0034  0.046 0032 0.044 0045 0042 0033  0.0403
File size: 36 KB
File number: S 0.092  0.052  0.042 0063 0.082 0073 0.065 0067 0085 0091 00712
File size:
300 KB
File number:2  0.023  0.008 0011 0016 0.008 0011 0014 0011 0013 0012 00127
File size:
100 KB
45

In the protection process, the TPM binding efficiency is
given in the term of execution latency. The total time includes
the user input time for the binding key usage secret and
migration secret. Thus, the difference mainly depends on the
user input speed. Here, Key Binding Latency=SRK Genera- >°
tion Latency+Binding Key retrieve Latency+Key Binding
Latency. Table 25 shows TPM binding measurement (Unit:
Seconds, KB: Kilo Bytes)

TABLE 25

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 1.7 157 163 165 1.62 157 1.66 1.63 165 1.67 1.635
number: 1
File size:
12KB
File 1.67 159 165 1.6 1.6 1.65 1.63 1.66 158 1.67 1.63
number: 2
File

size: 24 KB
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TABLE 25-continued

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 1.68 1.66 159 1.62 171 1.67 1.64 1.63 166 1.69 1.655
number: 3
File
size: 36 KB
File 1.7 155 166 1.69 173 158 1.62 1.65 164 1.69 1.651
number: 5
File
size: 300 KB
File 157 1.68 158 159 1.56 159 1.62 152 1.6 158 158
number: 2
File
size: 100 KB

In the unprotection process, the TPM unbinding latency is
measured and the total time includes the user input time for
binding key usage secret. So the difference mainly depends ,,
on the user input speed. Here, Key Unbinding Latency=SRK
Generation Latency+Binding Key retrieve Latency+Key
Unbinding Latency. Table 26 shows TPM unbinding mea-
surement (Unit: Seconds, KB: Kilo Bytes)

TABLE 26

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 1.68 1.64 169 1.67 1.53 157 166 1.62 164 171  1.641
number: 1
File size:
12KB
File 159 1.69 174 1.63 1.69 167 171 1.72 166 1.62 1672
number: 2
File size:
24KB
File 1.6 1.61 159 1.66 1.58 162 1.67 1.65 166 1.67 1.631
number: 3
File size:
36 KB
File 1.67 185 173 177 1.62 169 1.67 173 174 1.7 1717
number: 5
File size: 300 KB
File 1.87 1.89 18 178 178 178 1.69 172 175 178 178
number: 2
File size: 100 KB

The process of TPM identification to server mainly
includes two operations. First, the client and server exchange
the new generated nonce and both produce a final Nonce
using the received nonce and self-created nonce. Second,
TPM signature signing and server verification are performed. 50
The total time includes the user input time for AIK usage
secret. Here, Identity Attestation Latency=SRK Generation
Latency+AIK Retrieve Latency+RSA Signing [atency+Sig-
nature Verification Latency+Network Latency. Table 27
includes identity attestation measurement (Unit: Seconds,
KB: Kilo Bytes)

TABLE 27

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 14 136 167 14 134 144 136 141 14 136 1414
number: 1
File size: 12 KB
File 14 131 137 14 19 133 135 14 132 135 1413
number: 2

File size: 24 KB
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TABLE 27-continued
File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 139 142 143 138 14 152 136 141 133 132 139
number: 3
File size: 36 KB
File 15 1.5 147 155 152 157 146 1.5 153 152 1512
number: 5
File size: 300 KB
File 15 147 139 133 143 144 15 139 142 15 1437
number: 2
File size: 100 KB
. 15

The protection latency may be measured and the latency
given in the term of seconds. The protection process latency
mainly includes the latencies of file encryption and split,
TPM  binding process. Here, Total protection
latency=Password Logon System Latency+File Encryption 2
& Splitting Latency+Key Binding Latency+AIK & File Dis-
tribution Latency. Table 28 shows protection measurement
(Unit: Seconds, KB: Kilo Bytes)

TABLE 28

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 181 194 172 187 197 19.6 185 194 202 191 1899
number: 1
File size: 12 KB
File 197 213 205 225 19.6 221 202 214 205 221 2099
number: 2
File size: 24 KB
File 203 214 232 20,6 223 225 234 214 209 244 2204
number: 3
File size: 36 KB
File 678 649 634 618 622 631 641 624 672 663 6432
number: 5
File size: 300 KB
File 334 223 230 228 237 225 267 232 252 227 2455
number: 2
File size: 100 KB

The unprotection latency may be measured and the latency
given in the term of seconds. The unprotection process a5
latency mainly includes the latencies of TPM identity attes-
tation, file decryption and merge, TPM unbinding process.
Here, Total Unprotection latency=Password Logon System
Latency+TPM Identity Attestation Latency+Key Unbinding
Latency+File Merging & Decryption Latency. Table 29
shows unprotection measurement (Unit: Seconds, KB: Kilo 50
Bytes)

TABLE 29

File size Group
& number 1 2 3 4 5 6 7 8 9 10 Average
File 157 160 141 160 162 160 159 152 177 172 160
number: 1
File size:
12KB
File 163 171 186 191 177 172 178 182 183 190 17.93
number: 2
File size:
24KB
File 193 155 198 212 217 212 212 192 164 193 19.53
number: 3

File size: 36 KB

112
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TABLE 29-continued
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File size Group

& number 3 4 5 6 7 8

9 10 Average

File

number: 5

File size: 300 KB
File

number: 2

File size:

100 KB

500 47.1 433 463 472 464 49.1 50.2

268 187 197 241 202 272 201 19.2

474 50.5 4775

21.2 201 21.73

In terms of security design, the illustrative embodiment of
the present disclosure may be thought of as mainly five mod-
ules that, when combined smoothly with each other, provide
security protection over personal information. Each module
adds a layer of security to the overall design. The synchronous
log on scheme may utilize the Android Device and the client
PC as the input devices and to implement the input digits to
random number mapping. Each digit of password is input
alternately on android phone and the client PC, and at the
same time each digits is mapped into certain length random
number sequence and sent to server for verification. On the
server side, the SHA-256 hash value of correct random num-
ber sequence, which the hash value of received random num-
ber sequence is compared to, is stored. The result of the
compare is sent back to PC and android for the next operation.

An encryption/decryption scheme is provided that may
utilize AES-256 as the encryption method which was consid-
ered to be strong enough for current security requirement.
The AES keys are generated based on a unique seed which is
based on system generated time stamp. To play against side
channel attack and timing attack, GCM mode is introduced
into this design. The security of GCM mode relies on the fact
that the underlying block cipher cannot be distinguished from
arandom permutation. Finally, arandomly generated salt was
added to play against brute force attack.

A program is provided to split the encrypted files into
pieces and bulks based on random numbers. Junk data are also
injected into the split files. The paths and keys of the pieces
are stored into an index file. Index file is further used for
merging the pieces back to the original file. The index file may
also be encrypted by AES-GCM and split by the splitting
program. In the decryption process, the recovery of all the
files may start from the index file.

A TPM key binding/unbinding process may be provided.
Binding generally includes the operation of encrypting a mes-
sage using a public key. That is, the sender uses the public key
of'the intended recipient to encrypt the message. The message
is recoverable by decryption using the recipient’s private key.
When the private key is managed by the TPM as a non-
migratable key only the TPM that created the key may use it.
Hence, a message encrypted with the public key, “bound” to
a particular instance of a TPM. Keys are communication
endpoints and improperly managed keys can result in loss of
security. Thus, the TPM in this exemplary implementation
aids in improving security by providing key management. In
detail, the final index file encryption key is the root of the
whole cryptographic process, so it is binding with TPM for
concrete protection. In decryption process, the index file
encryption key is recovered using the corresponding private
key by providing correct identity to TPM.

40

50

A TPM signature authorization process may be provided.
To defeat attackers pretending to be the correct client with the
unique TPM trying to get the distributed index file pieces on
server, the TPM identity attestation scheme is designed in this
illustrative embodiment. In the end of encryption process,
TPM will generate an Attestation Identity Key which is 2048
bits RSA signing key pair and the public key is sent to server
for storage. In the first place of decryption process, the TPM
has to provide server the signature generated by previous
generated Attestation Identity Key, after the signature is veri-
fied by server using stored public key, then the index file
pieces can be sent back to client for the next operation of
decryption process.

Through the overall design, the TPM binding protection
and TPM identity attestation provides advantages compared
to alternative security protection software. It offers a solution
for the storage and protection of the software key, which is
problematic for alternative security software design. The
TPM identity attestation adds another layer of security over
protection. It prevents the attacker from recovering the index
file bypassing the TPM.

As shown above, the disclosed exemplary system works
smoothly and after multiple tests, it turns out to be very stable
and trustable.

For the overall system design, each module may add alayer
of security to the overall protection and they rely on one
another. FIG. 163 illustrates the system’s security depen-
dency. In Table 10 all the cryptographic processes over the
target files are considered and the security strength is mea-
sured in term of symmetric key size. The equivalent symmet-
ric key size of RSA-2048 bits is 112 bits. Table 30 shows
cryptographic processes security strength

TABLE 30
File File Index Index TPM TPM
En- En- En- En- Binding Storage
cryption cryption cryption cryption RSA Root
AES KEY v AES Key v Key Key Total
256 168 256 168 112 112 112
bits bits bits bits bits bits bits

In fact, the cloud storage and TPM hardware security fea-
tures are added over all the cryptographic processes. The
cloud storage of file pieces together with the identity attesta-
tion function provided by TPM makes the file pieces can only
be recovered by the authorized user. The TPM adds the whole
cryptographic processes with hardware security features
which bound the final index encryption key to a stable and
strongly protected hardware and makes sure that only the
authorized user with possession of the specific TPM can
recover the whole processes. The security features of each
module are provided in Table 31.
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TABLE 31

Multi-endpoint
Synchronous Logon

1. Random number sequence projection to password
digits are verified on server end;

module 2. Password is input separately on multi-endpoint to
play against key logger and screen capturer.
AES-GCM 1. AES-256 bits is used to get the best protection and
Encryption- performance;
Decryption module 2. GCM mode is used for AES pattern to play against

side channel attack.

1. Origin for file pieces cloud storage;

2. Obfuscate attackers from collecting the whole files;
1. Act as the reference point for software
cryptographic processes;

2. Add hardware securities over the whole
cryptographic processes;

3. Bound index encryption key with TPM to provide
physical boundary from the reach of malicious
attacker.

4. Based on storage root key which provide the root of
trust for storage.

1. Based on the unique Attestation Identity Key (AIK)
bound with unique identity UUID

2. Random generated UUID and 2048 bits AIK
together provides the identity proof for the specific
TPM and authorized user;

3. Only the user possessing the UUID, AIK and TPM
can provide authorized identity to recover all the cloud
storage file pieces.

File split-merge
module
TPM Key Binding-
Unbinding module

TPM Identity
Attestation Module

In Table 32, the security abilities and weakness of each
module are listed.

TABLE 32

Security Scenarios

Modules Abilities Weakness

Multi-endpoint
Synchronous Logon

Key Logger, Screen
Capturer, Offline

Man in the middle attack,
eavesdropping

System Dictionary Attack, Social
Engineering, Spyware
AES-GCM Brute-force attack
Encryption
Decryption
File Split-Merge Physical theft of asset, One file only split into two
Data Modification, pieces, better cloud based

Resource Manipulation,
Zero Day Attack, Side

security features can be
made by splitting into more

Channel Attack pieces
TPM Key Binding- Backdoor or 1. TPM utilize the RSA
Unbinding Command/Control, PKIwhichisa
Physical Theft of Asset, weakening to the
RAM Scraper, Violation security strength and
of Acceptable Policies, efficiency.
virus and worms, 2. The binding key, which
Compromised-Key is protected by SRK, is
Attack, Software Trojans  stored outside TPM. If it
is not well managed, it
could be stolen or
destroyed.
TPM Identity Abuse of System Access, 1. AIK is not issued by
Attestation Authentication Bypass, CA.
Phishing, Violation of 2. Man in the middle
Acceptable Policies, attack.

Identity Spoofing,
Resource Manipulation,
Flame

3. SHA-1 Hash for signing

The systems, methodologies, and components disclosed
above create a TPM-enhanced cloud-based file protection
system. Cloud computing will increase in importance going
forward. Due to possessions of multiple personal computing
devices, such as laptop, desktop, phone and tablet, cloud
computing security integrating all these computing powers
becomes available. Cloud storage of file pieces can success-
fully confuse hackers. In cloud computing, one must have full
access to the file system, each cloud endpoint should provide
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identity proof to the other endpoints for trust. Based on
unique Endorsement Key and root of trust, TPM can function
as the identity proof by using Attestation Identity Key. Attes-
tation Identity Key cloud be issued by CA through proving the
possession of unique Endorsement Key in the TPM.

Alternative systems with only software cryptographic pro-
cesses face a conundrum which is the storage and protection
of'the cryptographic keys. Traditionally, the keys being stored
on hard drive plainly is like leaving a spare front door key
somewhere in the yard. Security is just relying on a key-sized
hiding place that the hacker cannot find. This presents a
weakness for alternative implementations. Incorporating
TPM into the crypto system provides a solution to this tech-
nical problem and escalates the file protection system to the
hardware level. Thus, in accordance with the present disclo-
sure, utilizing TPM’s key binding feature and identity attes-
tation feature, drawbacks of alternative software crypto-
graphic processing implementations are addressed by TPM’s
root of trust and key binding and the cloud computing can be
fully accessed by providing identity attestation.

Password protection can also benefit from cloud comput-
ing. In the disclosed illustrative embodiments, a password is
separately inputted on the client PC and the Android Device
and mapped into random number sequences to be sent to
sever for verification. This design makes sure no one cloud
endpoint has the full password or password hash. It can suc-
cessfully defeat key logger and screen capturer, and it is also
resistant to dictionary attack and social engineer.

Finally, the disclosed systems, components, and method-
ologies, which in this illustrative embodiment consisted of 5
layers protection, is a good implementation and combination
of security, reliability, availability, efficiency and easy to use.
AES-GCM is used as the reliable encryption-decryption
scheme which provides high level symmetric cryptographic
security. Due to the popularity and variety of personal com-
puting devices, there are need and trend to better utilize mul-
tiple mobile computing devices to improve both efficiency
and security. This information system which utilizes the com-
puting powers of PCs and the Android Device explored the
cloud computing security features by using file splitting-
merging scheme to further obfuscate the protected informa-
tion by file pieces distribution. And as the major part of the
design, to solve the cryptographic key protection weakness of
solely software cryptographic processes, TPM is introduced
into the system design to provide key binding function and
also provide identity attestation function to protect the file
distribution process. And for the password protection, a syn-
chronous logon system which fully utilized the PCs and the
Android Device is designed so that the possession of any of
these computing devices cannot reveal the whole original
password.

After the system latency measurement, the disclosed sys-
tems are efficient and suitable for small size file protection
due to the high possibility of network transmission failure for
files over 300 Kilo Bytes. As shown by way of screenshots
above, the system is easy to use, as it only requires a user to
click a button and go on, with all underlying cryptographic
processes transparent for users.

Other improvements and features are within the scope of
this disclosure. In the synchronous Logon System, random
numbers mapping to password digits could be updated and
saved each time after user logon and used with random salt to
generate cryptographic keys. Then the password logon pro-
cess could further confuse hackers and get better protection
over user password. And also the random sequence could
further extend the randomness of key creation.
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In addition, in the AIK creation process, AIK could be
registered and authorized through Certificate Agent by pro-
viding the possession of unique Endorsement Key. Then AIK
could be used as the substitution of Endorsement Key and
avoid the reveal of Endorsement Key.

According to illustrative embodiments, various mecha-
nisms discussed above may combine to provide intrusion
detection and prevention capabilities. By way of example, in
illustrative embodiments, all of the OTPs and ACL items that
are required for network access may need to be completely
correct, such that a failure at any single point is detected as an
intrusion and blocked. Moreover, even if one or more of the
authentication checkpoints are compromised, intrusions may
still be detected. According to one benefit of illustrative
embodiments in accordance with the present disclosure, there
are no false positives for intrusion detection. Although not all
intrusion events may be attacks (e.g., a valid client attempting
to login with corrupted authentication information is cor-
rectly detected as an intrusion), in certain implementations
there may be no detected intrusions that are false positives.
Moreover, the ACL system implemented by IDACS as dis-
cussed herein may provide significantly high intrusion detec-
tion performance and can be used to trace back to the source
of attacks and generate real-time forensics reports based on
specific ACL violations.

Network security systems in accordance with the present
disclosure can be used for a variety of applications, and gen-
erally may be suitable for any networked environment. In one
example, network security systems in accordance with the
present disclosure can be used in connection with industrial
networks.

Industrial Networks may be divided into three general
areas, each of which should be logically partitioned from the
others by some security mechanism, such as a firewall. FIG.
164 shows an exemplary industrial network.

The depicted Industrial Network includes an Industrial
Control System consisting of Programmable Logic Control-
lers (PLCs) which control the elements of and industrial
process, such as sensors, motors, and pumps. The Industrial
Control System also contains a Control Console, which is
used to issue instructions or write firmware to, or collect
performance data from the PL.Cs. The depicted Industrial
Network also includes a Supervisory Network, also known as
Supervisory Control And Data Acquisition (SCADA), which
provides external control and performance data recording for
the Industrial Control System. Finally, the depicted Industrial
Network connects these networks to company intranets and/
or the Internet, enabling the packaging of performance data
into real-time reports that can be viewed remotely.

FIG. 165 shows how an illustrative IDACS network topol-
ogy described above may be used for Industrial Control Sys-
tems. The illustrative topology is divided into three functional
areas: Customers, Network, and Endpoints. Endpoints are
generally similar to servers or databases, in that they may
receive commands (e.g., Read, Write, or Execute) from the
Customers. Customers were discussed above, and as
explained, may consist of a human user paired with a com-
puter or control console and relevant security tokens (smart-
card, password, etc.) needed to communicate over the Indus-
trial Control System. The Network may consist of all
communication lines between the Customers and Endpoints.

The Network connects Customers and Endpoints through a
series of security servers, including Security Agents and
Super Security Agents, such as those described above.

10

15

20

25

30

35

40

45

50

55

65

118

Whenever a Customer or an Endpoint connects to the Net-
work, it may download a User Agent (UA), which operates in
connection with other network components in the manner
described above.

Although certain embodiments have been described and
illustrated in exemplary forms with a certain degree of par-
ticularity, it is noted that the description and illustrations have
been made by way of example only. Numerous changes in the
details of construction, combination, and arrangement of
parts and operations may be made. Accordingly, such
changes are intended to be included within the scope of the
disclosure, the protected scope of which is defined by the
claims.

The invention claimed is:

1. A system for determining whether a user of a user device
is authorized to access content stored in a database, compris-
ing:

computer-executable software code stored on one or more

non-transitory data storage devices for:

accepting a request by a user to access the content stored
in the database;

identifying a pseudo-random sequence of servers to par-
ticipate in authenticating the access of the content by
the user, wherein the pseudo-random sequence of
servers is part of a network path that connects the user
device to the database;

generating a sequence of passwords, wherein the
sequence of passwords includes a password corre-
sponding to each server in the pseudo-random
sequence of servers;

transmitting the request along the pseudo-random
sequence of servers;

determining that the user is permitted to access the con-
tent if all of the servers among the pseudo-random
sequence of servers verify the corresponding pass-
words; and

varying the passwords in the sequence of passwords
over time, and

wherein the system further comprises computer-execut-

able software code for identifying the pseudo-random

sequence of servers by:

assigning a pseudo-identifier to each of the servers;

computing, at each of the servers, a hash value of the
request received by the server;

determining which of the servers has a pseudo-identifier
with a lowest Hamming distance relative to the com-
puted hash value of the request; and

choosing the determined server as a next hop server for
the request.

2. The system of claim 1, wherein:

each server among the pseudo-random sequence of servers

includes computer-executable software code for verify-
ing a corresponding one of the passwords using an
authentication function; wherein

the system is configured to prevent the server from having

possession of the password or from deriving the pass-
word based on the authentication function; and

the system is configured to prevent interception or deriva-

tion of the password by attackers.

3. The system of claim 2, wherein at least one of the servers
among the pseudo-random sequence of servers includes com-
puter-executable software code for determining whether the
user is authorized to access the content based on a content
pseudo-identifier, wherein

the content pseudo-identifier is computed based on a pair-

wise relationship between the user device and the at least
one of the servers.
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4. The system of claim 3, wherein the content pseudo-
identifier and the password are varied subsequent to transmis-
sion of a data packet, subsequent to the user accessing the
data, or subsequent to a user logon session.

5. The system of claim 2, wherein each of the servers
among the pseudo-random sequence of servers identifies the
user based on a user pseudo-identifier, identifies the user
device based on a user device pseudo-identifier, and identifies
an application for rendering the content based on an applica-
tion pseudo-identifier, and

the user pseudo-identifier, the user device pseudo-identi-

fier, and the application pseudo-identifier used by each
of the servers are derived from pairwise relationships
between the user device and that server.

6. The system of claim 1, further comprising computer-
executable software code stored on one or more non-transi-
tory data storage devices for:

splitting the content to be accessed into encrypted compo-

nents;

storing the encrypted components in respective spatially

separated memory positions;

generating a plurality of content pseudo-identifiers;

assigning one of the content pseudo-identifiers to each of

the encrypted components; and

translating the request for the content into the plurality of

content pseudo-identifiers.

7. The system of claim 1, comprising:

aserver having a direct network link with one or more other

servers but not having a direct network link with the user

device and having computer-executable software code

stored on at least one non-transitory data storage device

for:

aggregating access logs reflecting past data transactions
generated by the servers among the pseudo-random
sequence of servers;

organizing the aggregated access logs in a correlated
database of the past data transactions; and

identifying a source of an attack based on an analysis of
correlations in the correlated database of the past data
transactions.

8. The system of claim 7, further comprising computer-
executable software code for:

organizing logged data based on user pseudo-identifiers,

user device pseudo-identifiers, content pseudo-identifi-
ers, or application pseudo-identifiers; and

identifying the source of an attack based on correlations

reflecting event similarity and time proximity that are
indicative of an attack.

9. A server for use in a system for determining whether a
user of a user device is authorized to access content stored in
a database, comprising:

computer-executable software code stored on one or more

non-transitory data storage devices for:

accepting a request to access the content stored in the
database, wherein the request includes a password
and a content pseudo-identifier;

using an authentication function to determine whether
the user is authorized to access the content corre-
sponding to the content pseudo-identifier; and

identifying, using a pseudo-random selection process, a
next hop server to participate in the determination of
whether the user is authorized to access the content
and to further verify the determination of the server;
wherein

the password is used only one time, and
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wherein the system further comprises computer-execut-

able software code for identifying the pseudo-random

sequence of servers by:

assigning a pseudo-identifier to each of the servers;

computing, at each of the servers, a hash value of the
request received by the server;

determining which of the servers has a pseudo-identifier
with a lowest Hamming distance relative to the com-
puted hash value of the request; and

choosing the determined server as a next hop server for
the request.

10. The server of claim 9, wherein the content pseudo-
identifier is computed based on a pairwise relationship
between the user device and the server.

11. The server of claim 9, further comprising computer-
executable software code stored on one or more non-transi-
tory data storage devices for identifying a next hop server
using a pseudo-random selection process by:

computing a hash value of the request;

analyzing pseudo-identifiers associated with other servers;

and

identifying a server having a pseudo-identifier with a low-

est Hamming distance relative to the computed hash
value of the request.

12. The server of claim 9, further comprising computer-
executable software code stored on one or more non-transi-
tory data storage devices for:

identifying the user based on a user pseudo-identifier, iden-

tifying the user device based on a user device pseudo-
identifier, and identifying an application for rendering
the content based on an application pseudo-identifier,
wherein

the user pseudo-identifier, the user device pseudo-identi-

fier, and the application pseudo-identifier are based on a
pairwise relationship between the user device and the
server.

13. The server of claim 9, further comprising computer-
executable software code stored on one or more non-transi-
tory data storage devices for translating the content pseudo-
identifier into a reference to the content within the database.

14. A method for determining whether a user of a user
device is authorized to access content stored in a database,
comprising:

accepting a request by a user to access the content stored in

the database;
identifying a pseudo-random sequence of servers to par-
ticipate in authenticating the access of the content by the
user, wherein the pseudo-random sequence of servers is
part of a network path that connects the user device to the
database;
generating a sequence of passwords, wherein the sequence
of passwords includes a password corresponding to each
server in the pseudo-random sequence of servers;

transmitting the request along the pseudo-random
sequence of servers;

determining that the user is permitted to access the content

if all of the servers among the pseudo-random sequence
of servers verify the corresponding passwords and if the
verifications of each of the servers are further verified by
other servers among the pseudo-random sequence of
servers; and

varying the passwords in the sequence of passwords over

time, and

wherein the method further comprises computer-execut-

able software code for identifying the pseudo-random
sequence of servers by:
assigning a pseudo-identifier to each of the servers;
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computing, at each of the servers, a hash value of the
request received by the server;

determining which of the servers has a pseudo-identifier
with a lowest Hamming distance relative to the com-
puted hash value of the request; and

choosing the determined server as a next hop server for
the request.

15. The method of claim 14, wherein each server among
the pseudo-random sequence of servers includes computer-
executable software code for verifying a corresponding one
of the passwords using an authentication function; wherein

the system is configured to prevent the server from having

possession of the password or from deriving the pass-
word based on the authentication function; and

the system is configured to prevent interception or deriva-

tion of the password by attackers.

16. The method of claim 14, further comprising:

computing a content pseudo-identifier based on a pairwise

relationship between the user device and a server; and
determining whether the user is authorized to access the
content based on the content pseudo-identifier.

17. The method of claim 16, wherein:

each of the servers among the pseudo-random sequence of

servers identifies the user based on a user pseudo-iden-
tifier, the user device based on a user device pseudo-
identifier, and an application for rendering the content
based on an application pseudo-identifier, and

the user pseudo-identifier, the user device pseudo-identi-

fier, and the application pseudo-identifier used by each
of the servers are based on pairwise relationships
between the user device and that server.

18. The method of claim 16, wherein the content pseudo-
identifier and the password are used only one time.
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19. The method of claim 14, further comprising:

splitting the content to be accessed into randomly selected
encrypted components;

forming a map containing encryption keys associated with
the encrypted components and numbers indicative of the
manner by which the content was split;

storing the encrypted components in respective spatially
separated memory positions;

generating a plurality of content pseudo-identifiers;

assigning one of the content pseudo-identifiers to each of
the encrypted components; and

translating the request for the content into the content
pseudo-identifiers.

20. The method of claim 14, comprising:

aggregating access logs reflecting past data transactions
generated by the servers among the pseudo-random
sequence of servers;

organizing the aggregated logs in a correlated database of
the past data transactions; and

identifying a source of an attack based on analysis of the
correlated database of the past data transactions.

21. The method of claim 20, further comprising:

organizing logged data based on user pseudo-identifiers,
user device pseudo-identifiers, content pseudo-identifi-
ers, or application pseudo-identifiers; and

identifying the source of an attack based on correlations in
event similarity and time proximity that are indicative of
a mistake made by one or more of the servers among the
pseudo-random sequence of servers in determining that
the user is permitted to access the content.
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